File size: 4,246 Bytes
4ed8ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import yfinance as yf
from typing import Annotated, Callable, Any, Optional
from pandas import DataFrame
from functools import wraps

from ..utils import save_output, SavePathType, decorate_all_methods


def init_ticker(func: Callable) -> Callable:
    """Decorator to initialize yf.Ticker and pass it to the function."""

    @wraps(func)
    def wrapper(symbol: Annotated[str, "ticker symbol"], *args, **kwargs) -> Any:
        ticker = yf.Ticker(symbol)
        return func(ticker, *args, **kwargs)

    return wrapper


@decorate_all_methods(init_ticker)
class YFinanceUtils:

    def get_stock_data(
        symbol: Annotated[str, "ticker symbol"],
        start_date: Annotated[
            str, "start date for retrieving stock price data, YYYY-mm-dd"
        ],
        end_date: Annotated[
            str, "end date for retrieving stock price data, YYYY-mm-dd"
        ],
        save_path: SavePathType = None,
    ) -> DataFrame:
        ticker = symbol
        stock_data = ticker.history(start=start_date, end=end_date)
        save_output(stock_data, f"Stock data for {ticker.ticker}", save_path)
        return stock_data

    def get_stock_info(
        symbol: Annotated[str, "ticker symbol"],
    ) -> dict:
        """Fetches and returns stock information."""
        ticker = symbol
        stock_info = ticker.info
        return stock_info

    def get_company_info(
        self,
        symbol: Annotated[str, "ticker symbol"],
        save_path: Optional[str] = None,
    ) -> DataFrame:
        """Fetches and returns company information as a DataFrame."""
        ticker = symbol
        info = ticker.info
        company_info = {
            "Company Name": info.get("shortName", "N/A"),
            "Industry": info.get("industry", "N/A"),
            "Sector": info.get("sector", "N/A"),
            "Country": info.get("country", "N/A"),
            "Website": info.get("website", "N/A"),
        }
        company_info_df = DataFrame([company_info])
        if save_path:
            company_info_df.to_csv(save_path)
            print(f"Company info for {ticker.ticker} saved to {save_path}")
        return company_info_df

    def get_stock_dividends(
        self,
        symbol: Annotated[str, "ticker symbol"],
        save_path: Optional[str] = None,
    ) -> DataFrame:
        """Fetches and returns the dividends data as a DataFrame."""
        ticker = symbol
        dividends = ticker.dividends
        if save_path:
            dividends.to_csv(save_path)
            print(f"Dividends for {ticker.ticker} saved to {save_path}")
        return dividends

    def get_income_stmt(symbol: Annotated[str, "ticker symbol"]) -> DataFrame:
        """Fetches and returns the income statement of the company as a DataFrame."""
        ticker = symbol
        income_stmt = ticker.financials
        return income_stmt

    def get_balance_sheet(symbol: Annotated[str, "ticker symbol"]) -> DataFrame:
        """Fetches and returns the balance sheet of the company as a DataFrame."""
        ticker = symbol
        balance_sheet = ticker.balance_sheet
        return balance_sheet

    def get_cash_flow(symbol: Annotated[str, "ticker symbol"]) -> DataFrame:
        """Fetches and returns the cash flow statement of the company as a DataFrame."""
        ticker = symbol
        cash_flow = ticker.cashflow
        return cash_flow

    def get_analyst_recommendations(symbol: Annotated[str, "ticker symbol"]) -> tuple:
        """Fetches the latest analyst recommendations and returns the most common recommendation and its count."""
        ticker = symbol
        recommendations = ticker.recommendations
        if recommendations.empty:
            return None, 0  # No recommendations available

        # Assuming 'period' column exists and needs to be excluded
        row_0 = recommendations.iloc[0, 1:]  # Exclude 'period' column if necessary

        # Find the maximum voting result
        max_votes = row_0.max()
        majority_voting_result = row_0[row_0 == max_votes].index.tolist()

        return majority_voting_result[0], max_votes


if __name__ == "__main__":
    print(YFinanceUtils.get_stock_data("AAPL", "2021-01-01", "2021-12-31"))
    # print(YFinanceUtils.get_stock_data())