File size: 5,486 Bytes
4ed8ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from .agent_library import library
from typing import Any, Callable, Dict, List, Literal
import autogen
from autogen.cache import Cache
from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent

from ..toolkits import register_toolkits
from .utils import *


class FinRobot(autogen.AssistantAgent):

    def __init__(
        self,
        name: str,
        system_message: str | None = None,
        toolkits: List[Callable | dict | type] = [],
        proxy: autogen.UserProxyAgent | None = None,
        **kwargs,
    ):
        orig_name = name
        name = name.replace("_Shadow", "")
        assert name in library, f"FinRobot {name} not found in agent library."

        default_toolkits = library[name].get("toolkits", [])
        default_system_message = library[name].get("profile", "")

        self.toolkits = toolkits or default_toolkits
        system_message = system_message or default_system_message

        assert bool(system_message), f"System message is required for {name}."

        super().__init__(orig_name, system_message, **kwargs)
        if proxy is not None:
            register_toolkits(self.toolkits, self, proxy)


from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent


class SingleAssistant:

    def __init__(
        self,
        name: str,
        llm_config: Dict[str, Any] = {},
        is_termination_msg=lambda x: x.get("content", "")
        and x.get("content", "").endswith("TERMINATE"),
        human_input_mode="NEVER",
        max_consecutive_auto_reply=10,
        code_execution_config={
            "work_dir": "coding",
            "use_docker": False,
        },
        **kwargs,
    ):

        self.user_proxy = autogen.UserProxyAgent(
            name="User_Proxy",
            is_termination_msg=is_termination_msg,
            human_input_mode=human_input_mode,
            max_consecutive_auto_reply=max_consecutive_auto_reply,
            code_execution_config=code_execution_config,
            **kwargs,
        )
        self.assistant = FinRobot(
            name,
            llm_config=llm_config,
            proxy=self.user_proxy,
        )

    def chat(self, message: str, use_cache=False, **kwargs):
        with Cache.disk() as cache:
            self.user_proxy.initiate_chat(
                self.assistant,
                message=message,
                cache=cache if use_cache else None,
                **kwargs,
            )


class SingleAssistantRAG:

    def __init__(
        self,
        name: str,
        llm_config: Dict[str, Any] = {},
        is_termination_msg=lambda x: x.get("content", "")
        and x.get("content", "").endswith("TERMINATE"),
        human_input_mode="NEVER",
        max_consecutive_auto_reply=10,
        code_execution_config={
            "work_dir": "coding",
            "use_docker": False,
        },
        retrieve_config=None,
        **kwargs,
    ):
        self.user_proxy = RetrieveUserProxyAgent(
            name="User_Proxy",
            is_termination_msg=is_termination_msg,
            human_input_mode=human_input_mode,
            max_consecutive_auto_reply=max_consecutive_auto_reply,
            code_execution_config=code_execution_config,
            retrieve_config=retrieve_config,
            **kwargs,
        )
        self.assistant = FinRobot(
            name,
            llm_config=llm_config,
            proxy=self.user_proxy,
        )

    def chat(self, message: str, use_cache=False, **kwargs):
        with Cache.disk() as cache:
            self.user_proxy.initiate_chat(
                self.assistant,
                message=self.user_proxy.message_generator,
                problem=message,
                cache=cache if use_cache else None,
                **kwargs,
            )


class SingleAssistantShadow(SingleAssistant):

    def __init__(
        self,
        name: str,
        llm_config: Dict[str, Any] = {},
        is_termination_msg=lambda x: x.get("content", "")
        and x.get("content", "").endswith("TERMINATE"),
        human_input_mode="NEVER",
        max_consecutive_auto_reply=10,
        code_execution_config={
            "work_dir": "coding",
            "use_docker": False,
        },
        **kwargs,
    ):
        super().__init__(
            name,
            llm_config=llm_config,
            is_termination_msg=is_termination_msg,
            human_input_mode=human_input_mode,
            max_consecutive_auto_reply=max_consecutive_auto_reply,
            code_execution_config=code_execution_config,
            **kwargs,
        )
        self.assistant = FinRobot(
            name,
            llm_config=llm_config,
            is_termination_msg=lambda x: x.get("content", "")
            and x.get("content", "").endswith("TERMINATE"),
            proxy=self.user_proxy,
        )
        self.assistant_shadow = FinRobot(
            name + "_Shadow",
            toolkits=[],
            llm_config=llm_config,
            proxy=None,
        )
        self.assistant.register_nested_chats(
            [
                {
                    "sender": self.assistant,
                    "recipient": self.assistant_shadow,
                    "message": order_message,
                    "summary_method": "last_msg",
                    "max_turns": 2,
                    "silent": True,  # mute the chat summary
                }
            ],
            trigger=order_trigger,
        )