Spaces:
Running
Running
File size: 5,486 Bytes
4ed8ca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from .agent_library import library
from typing import Any, Callable, Dict, List, Literal
import autogen
from autogen.cache import Cache
from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent
from ..toolkits import register_toolkits
from .utils import *
class FinRobot(autogen.AssistantAgent):
def __init__(
self,
name: str,
system_message: str | None = None,
toolkits: List[Callable | dict | type] = [],
proxy: autogen.UserProxyAgent | None = None,
**kwargs,
):
orig_name = name
name = name.replace("_Shadow", "")
assert name in library, f"FinRobot {name} not found in agent library."
default_toolkits = library[name].get("toolkits", [])
default_system_message = library[name].get("profile", "")
self.toolkits = toolkits or default_toolkits
system_message = system_message or default_system_message
assert bool(system_message), f"System message is required for {name}."
super().__init__(orig_name, system_message, **kwargs)
if proxy is not None:
register_toolkits(self.toolkits, self, proxy)
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
class SingleAssistant:
def __init__(
self,
name: str,
llm_config: Dict[str, Any] = {},
is_termination_msg=lambda x: x.get("content", "")
and x.get("content", "").endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={
"work_dir": "coding",
"use_docker": False,
},
**kwargs,
):
self.user_proxy = autogen.UserProxyAgent(
name="User_Proxy",
is_termination_msg=is_termination_msg,
human_input_mode=human_input_mode,
max_consecutive_auto_reply=max_consecutive_auto_reply,
code_execution_config=code_execution_config,
**kwargs,
)
self.assistant = FinRobot(
name,
llm_config=llm_config,
proxy=self.user_proxy,
)
def chat(self, message: str, use_cache=False, **kwargs):
with Cache.disk() as cache:
self.user_proxy.initiate_chat(
self.assistant,
message=message,
cache=cache if use_cache else None,
**kwargs,
)
class SingleAssistantRAG:
def __init__(
self,
name: str,
llm_config: Dict[str, Any] = {},
is_termination_msg=lambda x: x.get("content", "")
and x.get("content", "").endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={
"work_dir": "coding",
"use_docker": False,
},
retrieve_config=None,
**kwargs,
):
self.user_proxy = RetrieveUserProxyAgent(
name="User_Proxy",
is_termination_msg=is_termination_msg,
human_input_mode=human_input_mode,
max_consecutive_auto_reply=max_consecutive_auto_reply,
code_execution_config=code_execution_config,
retrieve_config=retrieve_config,
**kwargs,
)
self.assistant = FinRobot(
name,
llm_config=llm_config,
proxy=self.user_proxy,
)
def chat(self, message: str, use_cache=False, **kwargs):
with Cache.disk() as cache:
self.user_proxy.initiate_chat(
self.assistant,
message=self.user_proxy.message_generator,
problem=message,
cache=cache if use_cache else None,
**kwargs,
)
class SingleAssistantShadow(SingleAssistant):
def __init__(
self,
name: str,
llm_config: Dict[str, Any] = {},
is_termination_msg=lambda x: x.get("content", "")
and x.get("content", "").endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={
"work_dir": "coding",
"use_docker": False,
},
**kwargs,
):
super().__init__(
name,
llm_config=llm_config,
is_termination_msg=is_termination_msg,
human_input_mode=human_input_mode,
max_consecutive_auto_reply=max_consecutive_auto_reply,
code_execution_config=code_execution_config,
**kwargs,
)
self.assistant = FinRobot(
name,
llm_config=llm_config,
is_termination_msg=lambda x: x.get("content", "")
and x.get("content", "").endswith("TERMINATE"),
proxy=self.user_proxy,
)
self.assistant_shadow = FinRobot(
name + "_Shadow",
toolkits=[],
llm_config=llm_config,
proxy=None,
)
self.assistant.register_nested_chats(
[
{
"sender": self.assistant,
"recipient": self.assistant_shadow,
"message": order_message,
"summary_method": "last_msg",
"max_turns": 2,
"silent": True, # mute the chat summary
}
],
trigger=order_trigger,
)
|