wangzerui commited on
Commit
f2040a9
·
1 Parent(s): 3a4d3f2
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import os # Ensure os is imported
2
  import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
4
  import gradio as gr
@@ -31,7 +31,7 @@ base_model = AutoModelForCausalLM.from_pretrained(
31
  trust_remote_code=True,
32
  token=huggingface_token, # Use the token parameter
33
  cache_dir=cache_dir # Specify cache directory
34
- ).to("cuda") # Move model to CUDA
35
 
36
  # Load the tokenizer
37
  tokenizer = AutoTokenizer.from_pretrained(
@@ -43,7 +43,7 @@ tokenizer = AutoTokenizer.from_pretrained(
43
  )
44
 
45
  # Load the fine-tuned model
46
- ft_model = PeftModel.from_pretrained(base_model, "checkpoint-2800", cache_dir=cache_dir).to("cuda") # Move model to CUDA
47
 
48
  def formatting_func(job_description):
49
  text = f"### The job description: {job_description}\n ### The skills: "
@@ -52,7 +52,7 @@ def formatting_func(job_description):
52
  @spaces.GPU # Decorate the function to ensure it uses GPU
53
  def generate_skills(job_description):
54
  formatted_text = formatting_func(job_description)
55
- model_input = tokenizer(formatted_text, return_tensors="pt").to("cuda") # Use CUDA for GPU support
56
 
57
  ft_model.eval()
58
  with torch.no_grad():
 
1
+ import os
2
  import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
4
  import gradio as gr
 
31
  trust_remote_code=True,
32
  token=huggingface_token, # Use the token parameter
33
  cache_dir=cache_dir # Specify cache directory
34
+ )
35
 
36
  # Load the tokenizer
37
  tokenizer = AutoTokenizer.from_pretrained(
 
43
  )
44
 
45
  # Load the fine-tuned model
46
+ ft_model = PeftModel.from_pretrained(base_model, "checkpoint-2800", cache_dir=cache_dir)
47
 
48
  def formatting_func(job_description):
49
  text = f"### The job description: {job_description}\n ### The skills: "
 
52
  @spaces.GPU # Decorate the function to ensure it uses GPU
53
  def generate_skills(job_description):
54
  formatted_text = formatting_func(job_description)
55
+ model_input = tokenizer(formatted_text, return_tensors="pt").to("cuda") # Ensure input is on CUDA
56
 
57
  ft_model.eval()
58
  with torch.no_grad():