Spaces:
Sleeping
Sleeping
import os # Ensure os is imported | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
import gradio as gr | |
from peft import PeftModel | |
import spaces # Ensure spaces is imported | |
# Define the base model ID | |
base_model_id = "meta-llama/Llama-2-13b-hf" | |
# Create a BitsAndBytesConfig object with the corrected settings | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
# Ensure you have the Hugging Face token set as an environment variable | |
huggingface_token = os.getenv('HUGGINGFACE_TOKEN') | |
if not huggingface_token: | |
raise Exception("Hugging Face token not found. Please set it as an environment variable 'HUGGINGFACE_TOKEN'.") | |
# Define cache directory | |
cache_dir = "./cache" | |
# Load the base model with the updated quantization configuration | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_id, | |
quantization_config=quantization_config, | |
trust_remote_code=True, | |
token=huggingface_token, # Use the token parameter | |
cache_dir=cache_dir # Specify cache directory | |
).to("cuda") # Move model to CUDA | |
# Load the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
base_model_id, | |
add_bos_token=True, | |
trust_remote_code=True, | |
token=huggingface_token, | |
cache_dir=cache_dir # Specify cache directory | |
) | |
# Load the fine-tuned model | |
ft_model = PeftModel.from_pretrained(base_model, "checkpoint-2800", cache_dir=cache_dir).to("cuda") # Move model to CUDA | |
def formatting_func(job_description): | |
text = f"### The job description: {job_description}\n ### The skills: " | |
return text | |
# Decorate the function to ensure it uses GPU | |
def generate_skills(job_description): | |
formatted_text = formatting_func(job_description) | |
model_input = tokenizer(formatted_text, return_tensors="pt").to("cuda") # Use CUDA for GPU support | |
ft_model.eval() | |
with torch.no_grad(): | |
output_tokens = ft_model.generate(**model_input, max_new_tokens=200)[0] | |
generated_text = tokenizer.decode(output_tokens, skip_special_tokens=True) | |
# Extract the text after "### The skills:" and before "### The qualifications:" | |
skills_start_index = generated_text.find("### The skills:") + len("### The skills:") | |
qualifications_start_index = generated_text.find("### The qualifications:") | |
if qualifications_start_index != -1: | |
skills_text = generated_text[skills_start_index:qualifications_start_index].strip() | |
else: | |
skills_text = generated_text[skills_start_index:].strip() | |
return skills_text | |
# Define the Gradio interface | |
inputs = gr.Textbox(lines=10, label="Job description:", placeholder="Enter or paste the job description here...") | |
outputs = gr.Textbox(label="Required skills:", placeholder="The required skills will be displayed here...") | |
gr.Interface(fn=generate_skills, inputs=inputs, outputs=outputs, title="Job Skills Analysis", | |
description="Paste the job description in the text box below and the model will show the required skills for candidates.").launch(share=True) # Set share=True to create a public link | |