Spaces:
Runtime error
Runtime error
File size: 9,783 Bytes
10b617b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
from typing import Literal
from langgraph.graph import StateGraph, END
from langchain_openai import ChatOpenAI
from state import ConversationState
from agents import (
RouterAgent,
GeneralDesignAgent,
BudgetAnalysisAgent,
FloorplanAgent,
FloorplanGeneratorAgent,
RegulationAgent
)
from detailed_budget_agent import DetailedBudgetAgent
# Removed creative_specialists - they had NoneType formatting errors
# Keeping only the core working agents
def create_initial_state() -> ConversationState:
"""Create initial conversation state with enhanced multi-agent memory"""
return {
"messages": [],
"current_topic": None,
"user_requirements": {
"budget": None,
"location": "Montreal", # Default as specified in requirements
"family_size": None,
"lifestyle_preferences": [],
"special_needs": []
},
"floorplan_requirements": {
"num_floors": None,
"total_sqft": None,
"lot_shape": None,
"lot_dimensions": None,
"rooms": []
},
"detailed_floorplan": {
"design_analysis": None,
"detailed_rooms": [],
"structural_elements": [],
"circulation_plan": {},
"lot_utilization": {},
"architectural_features": []
},
"budget_breakdown": {
"site_preparation": None,
"foundation": None,
"framing": None,
"roofing": None,
"exterior_finishes": None,
"interior_finishes": None,
"mechanical_systems": None,
"electrical_systems": None,
"plumbing_systems": None,
"permits_fees": None,
"professional_services": None,
"contingency": None,
"total_construction_cost": None,
"cost_per_sqft": None,
"budget_analysis": None
},
"conversation_history": [],
"agent_recommendations": [],
"agent_memory": {}, # Shared memory between agents
"next_agent": None,
"floorplan_ready": False,
"budget_ready": False
}
def should_generate_floorplan(state: ConversationState) -> Literal["generate_floorplan", "route_to_agent"]:
"""Decide whether to generate floorplan or continue conversation"""
if state["floorplan_ready"]:
return "generate_floorplan"
return "route_to_agent"
def should_generate_budget(state: ConversationState) -> Literal["generate_budget", "route_to_agent"]:
"""Decide whether to generate detailed budget or continue conversation"""
# Check if we have enough info for detailed budget and floorplan is designed
has_budget = state["user_requirements"]["budget"] is not None
has_floorplan_details = state["detailed_floorplan"]["detailed_rooms"] != []
if has_budget and has_floorplan_details and not state["budget_ready"]:
return "generate_budget"
return "route_to_agent"
def route_to_specialist(state: ConversationState) -> Literal[
"general_design", "budget_analysis", "floorplan", "detailed_budget", "regulation", "end"
]:
"""Route to appropriate specialist agent - core working agents plus regulation"""
next_agent = state.get("next_agent")
# Check if we should do detailed budget after floorplan
if state["detailed_floorplan"]["detailed_rooms"] and not state["budget_ready"]:
return "detailed_budget"
# Route to specialist based on agent decision - core working agents
routing_map = {
"general": "general_design",
"budget": "budget_analysis",
"floorplan": "floorplan",
"regulation": "regulation"
}
return routing_map.get(next_agent, "end")
def create_architecture_assistant_graph(model: ChatOpenAI) -> StateGraph:
"""Create the LangGraph workflow for the architecture assistant with multi-agent collaboration"""
# Initialize core working agents plus regulation
router = RouterAgent(model)
general_agent = GeneralDesignAgent(model)
budget_agent = BudgetAnalysisAgent(model)
floorplan_agent = FloorplanAgent(model)
floorplan_generator = FloorplanGeneratorAgent(model)
detailed_budget_agent = DetailedBudgetAgent(model)
regulation_agent = RegulationAgent(model)
# Create the graph
workflow = StateGraph(ConversationState)
# Add core working nodes plus regulation
workflow.add_node("router", router.process)
workflow.add_node("general_design", general_agent.process)
workflow.add_node("budget_analysis", budget_agent.process)
workflow.add_node("floorplan", floorplan_agent.process)
workflow.add_node("generate_floorplan", floorplan_generator.process)
workflow.add_node("detailed_budget", detailed_budget_agent.process)
workflow.add_node("regulation", regulation_agent.process)
# Set entry point
workflow.set_entry_point("router")
# Add conditional routing from router to core working specialists plus regulation
workflow.add_conditional_edges(
"router",
route_to_specialist,
{
"general_design": "general_design",
"budget_analysis": "budget_analysis",
"floorplan": "floorplan",
"detailed_budget": "detailed_budget",
"regulation": "regulation",
"end": END
}
)
# Add conditional routing from floorplan agent to check if ready for generation
workflow.add_conditional_edges(
"floorplan",
should_generate_floorplan,
{
"generate_floorplan": "generate_floorplan",
"route_to_agent": END
}
)
# After floorplan generation, automatically trigger detailed budget if budget available
workflow.add_conditional_edges(
"generate_floorplan",
should_generate_budget,
{
"generate_budget": "detailed_budget",
"route_to_agent": END
}
)
# All core agents end conversation after responding (user can continue with new input)
workflow.add_edge("general_design", END)
workflow.add_edge("budget_analysis", END)
workflow.add_edge("detailed_budget", END)
workflow.add_edge("regulation", END)
return workflow.compile()
class ArchitectureAssistant:
"""Main architecture assistant class with persistent state management"""
def __init__(self, openai_api_key: str, user_id: str = None):
self.model = ChatOpenAI(
api_key=openai_api_key,
model="gpt-4o-mini",
temperature=0.7
)
self.graph = create_architecture_assistant_graph(self.model)
self.state = create_initial_state()
# Initialize user state management
from user_state_manager import user_state_manager
self.state_manager = user_state_manager
self.user_id = user_id
self.session_id = None
# Start new session
if user_id:
self.session_id = self.state_manager.start_new_session(user_id)
def chat(self, user_input: str, save_state: bool = True) -> str:
"""Process user input and return response with optional state saving"""
# Add user message to state
self.state["messages"].append({
"role": "user",
"content": user_input
})
# Process through the graph
result = self.graph.invoke(self.state)
# Update state with result
self.state = result
# Save state after each interaction
if save_state and self.user_id:
self.state_manager.save_user_state(
self.state,
self.user_id,
self.session_id
)
# Return the last assistant message
assistant_messages = [msg for msg in self.state["messages"] if msg["role"] == "assistant"]
if assistant_messages:
return assistant_messages[-1]["content"]
else:
return "I'm here to help with your home design questions!"
def get_conversation_summary(self) -> dict:
"""Get a summary of the current conversation state"""
return {
"user_requirements": self.state["user_requirements"],
"floorplan_requirements": self.state["floorplan_requirements"],
"current_topic": self.state["current_topic"],
"total_messages": len(self.state["messages"])
}
def reset_conversation(self, start_new_session: bool = True):
"""Reset the conversation state"""
self.state = create_initial_state()
# Start new session if requested
if start_new_session and self.user_id:
self.session_id = self.state_manager.start_new_session(self.user_id)
def load_previous_state(self, session_id: str = None) -> bool:
"""Load a previous conversation state"""
if not self.user_id:
return False
loaded_state = self.state_manager.load_user_state(self.user_id, session_id)
if loaded_state:
self.state = loaded_state
if session_id:
self.session_id = session_id
return True
return False
def get_user_history(self) -> list:
"""Get conversation history for current user"""
if not self.user_id:
return []
return self.state_manager.get_user_history(self.user_id)
def set_user_id(self, user_id: str):
"""Set or change the user ID"""
self.user_id = user_id
self.session_id = self.state_manager.start_new_session(user_id) |