Spaces:
Runtime error
Runtime error
"""Credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py while mistakes are mine.""" | |
# pylint: disable=broad-exception-caught, redefined-outer-name, missing-function-docstring, missing-module-docstring, too-many-arguments, line-too-long, invalid-name, redefined-builtin, redefined-argument-from-local | |
# import gradio as gr | |
# model_name = "models/THUDM/chatglm2-6b-int4" | |
# gr.load(model_name).lauch() | |
# %%writefile demo-4bit.py | |
import os | |
import time | |
from textwrap import dedent | |
import gradio as gr | |
import mdtex2html | |
import torch | |
from loguru import logger | |
from transformers import AutoModel, AutoTokenizer | |
# fix timezone in Linux | |
os.environ["TZ"] = "Asia/Shanghai" | |
try: | |
time.tzset() # type: ignore # pylint: disable=no-member | |
except Exception: | |
# Windows | |
logger.warning("Windows, cant run time.tzset()") | |
model_name = "wangrongsheng/IvyGPT-35" | |
RETRY_FLAG = False | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
#model = AutoModel.from_pretrained(model_name, trust_remote_code=True).quantize(4).half().cuda() | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half().cuda() | |
model = model.eval() | |
_ = """Override Chatbot.postprocess""" | |
def postprocess(self, y): | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
gr.Chatbot.postprocess = postprocess | |
def parse_text(text): | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split("`") | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = "<br></code></pre>" | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", r"\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>" + line | |
text = "".join(lines) | |
return text | |
def predict( | |
RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values | |
): | |
try: | |
chatbot.append((parse_text(input), "")) | |
except Exception as exc: | |
logger.error(exc) | |
logger.debug(f"{chatbot=}") | |
_ = """ | |
if chatbot: | |
chatbot[-1] = (parse_text(input), str(exc)) | |
yield chatbot, history, past_key_values | |
# """ | |
yield chatbot, history, past_key_values | |
""" | |
for response, history, past_key_values in model.stream_chat( | |
tokenizer, | |
input, | |
history, | |
past_key_values=past_key_values, | |
return_past_key_values=True, | |
max_length=max_length, | |
top_p=top_p, | |
temperature=temperature, | |
): | |
""" | |
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, | |
temperature=temperature): | |
chatbot[-1] = (parse_text(input), parse_text(response)) | |
yield chatbot, history, past_key_values | |
def trans_api(input, max_length=40960, top_p=0.7, temperature=0.95): | |
if max_length < 10: | |
max_length = 40960 | |
if top_p < 0.1 or top_p > 1: | |
top_p = 0.7 | |
if temperature <= 0 or temperature > 1: | |
temperature = 0.01 | |
try: | |
res, _ = model.chat( | |
tokenizer, | |
input, | |
history=[], | |
past_key_values=None, | |
max_length=max_length, | |
top_p=top_p, | |
temperature=temperature, | |
) | |
# logger.debug(f"{res=} \n{_=}") | |
except Exception as exc: | |
logger.error(f"{exc=}") | |
res = str(exc) | |
return res | |
def reset_user_input(): | |
return gr.update(value="") | |
def reset_state(): | |
return [], [], None | |
# Delete last turn | |
def delete_last_turn(chat, history): | |
if chat and history: | |
chat.pop(-1) | |
history.pop(-1) | |
return chat, history | |
# Regenerate response | |
def retry_last_answer( | |
user_input, chatbot, max_length, top_p, temperature, history, past_key_values | |
): | |
if chatbot and history: | |
# Removing the previous conversation from chat | |
chatbot.pop(-1) | |
# Setting up a flag to capture a retry | |
RETRY_FLAG = True | |
# Getting last message from user | |
user_input = history[-1][0] | |
# Removing bot response from the history | |
history.pop(-1) | |
yield from predict( | |
RETRY_FLAG, # type: ignore | |
user_input, | |
chatbot, | |
max_length, | |
top_p, | |
temperature, | |
history, | |
past_key_values, | |
) | |
with gr.Blocks(title="IvyGPT", theme=gr.themes.Soft(text_size="sm")) as demo: | |
# gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""") | |
gr.HTML( | |
"""<h1 align="center">IvyGPT医疗对话大模型</h1>""" | |
) | |
with gr.Accordion("🎈 Info", open=False): | |
_ = f""" | |
## 欢迎体验IvyGPT | |
近期在通用领域中出现的大语言模型(LLMs),例如ChatGPT,在遵循指令和产生类人响应方面表现出了显著的成功。然而,这样的大型语言模型并没有被广泛应用于医学领域,导致响应的准确性较差,无法提供关于医学诊断、药物等合理的建议。为了应对这一挑战,我们提出了IvyGPT,这是一个医疗大语言模型,它在高质量的医学问答数据上进行了监督微调,并使用人类反馈的强化学习进行了训练。 | |
[模型下载地址](https://huggingface.co/wangrongsheng/IvyGPT-35) | |
""" | |
gr.Markdown(dedent(_)) | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Column(scale=12): | |
user_input = gr.Textbox( | |
show_label=False, | |
placeholder="Input...", | |
).style(container=False) | |
RETRY_FLAG = gr.Checkbox(value=False, visible=False) | |
with gr.Column(min_width=32, scale=1): | |
with gr.Row(): | |
submitBtn = gr.Button("Submit", variant="primary") | |
deleteBtn = gr.Button("删除最后一条对话", variant="secondary") | |
retryBtn = gr.Button("重新生成Regenerate", variant="secondary") | |
with gr.Column(scale=1): | |
emptyBtn = gr.Button("Clear History") | |
max_length = gr.Slider( | |
0, | |
32768, | |
value=8192, | |
step=1.0, | |
label="Maximum length", | |
interactive=True, | |
) | |
top_p = gr.Slider( | |
0, 1, value=0.85, step=0.01, label="Top P", interactive=True | |
) | |
temperature = gr.Slider( | |
0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True | |
) | |
history = gr.State([]) | |
past_key_values = gr.State(None) | |
user_input.submit( | |
predict, | |
[ | |
RETRY_FLAG, | |
user_input, | |
chatbot, | |
max_length, | |
top_p, | |
temperature, | |
history, | |
past_key_values, | |
], | |
[chatbot, history, past_key_values], | |
show_progress="full", | |
) | |
submitBtn.click( | |
predict, | |
[ | |
RETRY_FLAG, | |
user_input, | |
chatbot, | |
max_length, | |
top_p, | |
temperature, | |
history, | |
past_key_values, | |
], | |
[chatbot, history, past_key_values], | |
show_progress="full", | |
api_name="predict", | |
) | |
submitBtn.click(reset_user_input, [], [user_input]) | |
emptyBtn.click( | |
reset_state, outputs=[chatbot, history, past_key_values], show_progress="full" | |
) | |
retryBtn.click( | |
retry_last_answer, | |
inputs=[ | |
user_input, | |
chatbot, | |
max_length, | |
top_p, | |
temperature, | |
history, | |
past_key_values, | |
], | |
# outputs = [chatbot, history, last_user_message, user_message] | |
outputs=[chatbot, history, past_key_values], | |
) | |
deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history]) | |
with gr.Accordion("Example inputs", open=True): | |
examples = gr.Examples( | |
examples=[ | |
["熬夜对身体有什么危害? "], | |
["新冠肺炎怎么预防"], | |
["系统性红斑狼疮的危害和治疗方法是什么?"], | |
], | |
inputs=[user_input], | |
examples_per_page=50, | |
) | |
with gr.Accordion("For Chat/Translation API", open=False, visible=False): | |
input_text = gr.Text() | |
tr_btn = gr.Button("Go", variant="primary") | |
out_text = gr.Text() | |
tr_btn.click( | |
trans_api, | |
[input_text, max_length, top_p, temperature], | |
out_text, | |
# show_progress="full", | |
api_name="tr", | |
) | |
_ = """ | |
input_text.submit( | |
trans_api, | |
[input_text, max_length, top_p, temperature], | |
out_text, | |
show_progress="full", | |
api_name="tr1", | |
) | |
# """ | |
# demo.queue().launch(share=False, inbrowser=True) | |
# demo.queue().launch(share=True, inbrowser=True, debug=True) | |
# concurrency_count > 1 requires more memory, max_size: queue size | |
# T4 medium: 30GB, model size: ~4G concurrency_count = 6 | |
# leave one for api access | |
# reduce to 5 if OOM occurs to often | |
demo.queue(concurrency_count=6, max_size=30).launch(debug=True) | |