wangjin2000 commited on
Commit
ed919b2
·
verified ·
1 Parent(s): bb2da4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -13
app.py CHANGED
@@ -122,7 +122,7 @@ def show_preds_image(filepath):
122
  img_with_boxes = draw_bounding_boxes(img0, results)
123
  return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
124
 
125
- '''
126
  # Define Gradio components
127
  input_component = gr.components.Image(type="filepath", label="Input Image")
128
  output_component = gr.components.Image(type="numpy", label="Output Image")
@@ -132,21 +132,13 @@ interface = gr.Interface(
132
  fn=show_preds_image,
133
  inputs=input_component,
134
  outputs=output_component,
135
- title="Lung Nodule Detection [ Segmentation Model ]",
136
- examples=[
137
- "image_1.jpg",
138
- "image_2.jpg",
139
- "image_3.jpg",
140
- "image_4.jpg",
141
- "image_5.jpg",
142
- "image_6.jpg",
143
- ],
144
  description=' "This online deployment proves the effectiveness and efficient function of the machine learning model in identifying lung cancer nodules. The implementation of YOLO for core detection tasks is employed that is an efficient and accurate algorithm for object detection. Through the precise hyper-parameter tuning process, the model proposed in this paper has given an impressive boost in the performance. Moreover, the model uses Retinanet algorithm which is recognized as the powerful tool effective in dense object detection. In an attempt to enhance the model’s performance, the backbone of this architecture consists of a Feature Pyramid Network (FPN). The FPN plays an important role in boosting the model’s capacity in recognizing objects in different scales through the construction of high semantic feature map in different resolutions. In conclusion, this deployment encompasses YOLOv5, hyperparameter optimization, Retinanet, and FPN as one of the most effective and modern solutions for the detection of lung cancer nodules." ~ Basil Shaji 😇',
145
  live=False,
146
  )
147
 
148
  interface.launch()
149
- '''
150
 
151
  def read_and_preprocess_dicom(file_path: str):
152
  """
@@ -190,7 +182,7 @@ def read_and_preprocess_dicom(file_path: str):
190
 
191
  return image, df_metadata.to_pandas() # Convert to pandas DataFrame for Gradio compatibility
192
 
193
-
194
  def build_interface():
195
  """
196
  Function to build the Gradio interface
@@ -236,4 +228,4 @@ def build_interface():
236
  if __name__ == '__main__':
237
  demo = build_interface()
238
  demo.launch
239
-
 
122
  img_with_boxes = draw_bounding_boxes(img0, results)
123
  return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
124
 
125
+
126
  # Define Gradio components
127
  input_component = gr.components.Image(type="filepath", label="Input Image")
128
  output_component = gr.components.Image(type="numpy", label="Output Image")
 
132
  fn=show_preds_image,
133
  inputs=input_component,
134
  outputs=output_component,
135
+ title="Lung Nodule Detection",
136
+ examples = ["samples/81_80.dcm","samples/110_109.dcm","samples/189_188.dcm"],
 
 
 
 
 
 
 
137
  description=' "This online deployment proves the effectiveness and efficient function of the machine learning model in identifying lung cancer nodules. The implementation of YOLO for core detection tasks is employed that is an efficient and accurate algorithm for object detection. Through the precise hyper-parameter tuning process, the model proposed in this paper has given an impressive boost in the performance. Moreover, the model uses Retinanet algorithm which is recognized as the powerful tool effective in dense object detection. In an attempt to enhance the model’s performance, the backbone of this architecture consists of a Feature Pyramid Network (FPN). The FPN plays an important role in boosting the model’s capacity in recognizing objects in different scales through the construction of high semantic feature map in different resolutions. In conclusion, this deployment encompasses YOLOv5, hyperparameter optimization, Retinanet, and FPN as one of the most effective and modern solutions for the detection of lung cancer nodules." ~ Basil Shaji 😇',
138
  live=False,
139
  )
140
 
141
  interface.launch()
 
142
 
143
  def read_and_preprocess_dicom(file_path: str):
144
  """
 
182
 
183
  return image, df_metadata.to_pandas() # Convert to pandas DataFrame for Gradio compatibility
184
 
185
+ '''
186
  def build_interface():
187
  """
188
  Function to build the Gradio interface
 
228
  if __name__ == '__main__':
229
  demo = build_interface()
230
  demo.launch
231
+ '''