Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ from yolov5.models.experimental import attempt_load
|
|
18 |
from yolov5.utils.general import non_max_suppression
|
19 |
from yolov5.utils.augmentations import letterbox
|
20 |
|
21 |
-
'''
|
22 |
# Example URLs for downloading images
|
23 |
file_urls = [
|
24 |
"https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0",
|
@@ -40,7 +40,7 @@ def download_file(url, save_name):
|
|
40 |
# Download images
|
41 |
for i, url in enumerate(file_urls):
|
42 |
download_file(url, f"image_{i}.jpg")
|
43 |
-
|
44 |
|
45 |
# Load YOLOv5 model (placeholder)
|
46 |
model_path = "best.pt" # Path to your YOLOv5 model
|
@@ -48,11 +48,11 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU
|
|
48 |
model = attempt_load(model_path, device=device) # Placeholder for model loading
|
49 |
model.eval() # Set the model to evaluation mode
|
50 |
|
51 |
-
|
52 |
-
def preprocess_image(image):
|
53 |
-
|
54 |
-
print("in preprocess-0
|
55 |
-
img0 = letterbox(image, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
|
56 |
img = letterbox(img0, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
|
57 |
print("in preprocess-1 img.shape:",img.shape)
|
58 |
img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB, to 3x416x416
|
@@ -63,6 +63,8 @@ def preprocess_image(image):
|
|
63 |
if img.ndimension() == 3:
|
64 |
#img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB,
|
65 |
img = img.unsqueeze(0)
|
|
|
|
|
66 |
return img, img0
|
67 |
|
68 |
def infer(model, img):
|
|
|
18 |
from yolov5.utils.general import non_max_suppression
|
19 |
from yolov5.utils.augmentations import letterbox
|
20 |
|
21 |
+
#'''
|
22 |
# Example URLs for downloading images
|
23 |
file_urls = [
|
24 |
"https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0",
|
|
|
40 |
# Download images
|
41 |
for i, url in enumerate(file_urls):
|
42 |
download_file(url, f"image_{i}.jpg")
|
43 |
+
|
44 |
|
45 |
# Load YOLOv5 model (placeholder)
|
46 |
model_path = "best.pt" # Path to your YOLOv5 model
|
|
|
48 |
model = attempt_load(model_path, device=device) # Placeholder for model loading
|
49 |
model.eval() # Set the model to evaluation mode
|
50 |
|
51 |
+
def preprocess_image(image_path):
|
52 |
+
#def preprocess_image(image):
|
53 |
+
img0 = cv2.imread(image_path)
|
54 |
+
print("in preprocess-0 img0.shape:",img0.shape)
|
55 |
+
#img0 = letterbox(image, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
|
56 |
img = letterbox(img0, 640, stride=32, auto=True)[0] # Resize and pad to 640x640
|
57 |
print("in preprocess-1 img.shape:",img.shape)
|
58 |
img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB, to 3x416x416
|
|
|
63 |
if img.ndimension() == 3:
|
64 |
#img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB,
|
65 |
img = img.unsqueeze(0)
|
66 |
+
print("in preprocess-2 img.shape:",img.shape)
|
67 |
+
|
68 |
return img, img0
|
69 |
|
70 |
def infer(model, img):
|