wangjin2000 commited on
Commit
998929e
·
verified ·
1 Parent(s): 8b66239

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -87,7 +87,7 @@ def draw_bounding_boxes(img, results):
87
  def show_preds_image(filepath):
88
  results, img0, dicom_meta = detect_objects(filepath)
89
  img_with_boxes, results = draw_bounding_boxes(img0, results)
90
-
91
  #return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
92
  return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB), results, dicom_meta
93
 
@@ -111,19 +111,17 @@ def read_and_preprocess_dicom(file_path: str):
111
 
112
  # Normalize the pixel data to 8-bit and convert to a PIL image
113
  if pixel_array.dtype != np.uint8:
114
- print("np.min(pixel_array),np.max(pixel_array):",np.min(pixel_array),np.max(pixel_array))
115
  pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
116
  np.uint8)
117
- print("Normalized np.min(pixel_array),np.max(pixel_array):",np.min(pixel_array),np.max(pixel_array))
118
  image_pil = Image.fromarray(pixel_array)
119
 
120
  image = image_pil.convert('RGB')
121
 
122
- print("In preprocess dicom:", image.size)
123
  image = np.array(image)[:,:,::-1].copy()
124
 
125
  # shape
126
- print("In preprocess dicom-image.shape2:",image.shape)
127
 
128
  # Collect metadata in dictionary format and convert to DataFrame
129
  metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}
 
87
  def show_preds_image(filepath):
88
  results, img0, dicom_meta = detect_objects(filepath)
89
  img_with_boxes, results = draw_bounding_boxes(img0, results)
90
+ print("In show_preds_image:", dicom_meta.IntanceID)
91
  #return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
92
  return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB), results, dicom_meta
93
 
 
111
 
112
  # Normalize the pixel data to 8-bit and convert to a PIL image
113
  if pixel_array.dtype != np.uint8:
 
114
  pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
115
  np.uint8)
 
116
  image_pil = Image.fromarray(pixel_array)
117
 
118
  image = image_pil.convert('RGB')
119
 
120
+ #print("In preprocess dicom:", image.size)
121
  image = np.array(image)[:,:,::-1].copy()
122
 
123
  # shape
124
+ #print("In preprocess dicom-image.shape2:",image.shape)
125
 
126
  # Collect metadata in dictionary format and convert to DataFrame
127
  metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}