Update app.py
Browse files
app.py
CHANGED
@@ -87,7 +87,7 @@ def draw_bounding_boxes(img, results):
|
|
87 |
def show_preds_image(filepath):
|
88 |
results, img0, dicom_meta = detect_objects(filepath)
|
89 |
img_with_boxes, results = draw_bounding_boxes(img0, results)
|
90 |
-
|
91 |
#return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
|
92 |
return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB), results, dicom_meta
|
93 |
|
@@ -111,19 +111,17 @@ def read_and_preprocess_dicom(file_path: str):
|
|
111 |
|
112 |
# Normalize the pixel data to 8-bit and convert to a PIL image
|
113 |
if pixel_array.dtype != np.uint8:
|
114 |
-
print("np.min(pixel_array),np.max(pixel_array):",np.min(pixel_array),np.max(pixel_array))
|
115 |
pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
|
116 |
np.uint8)
|
117 |
-
print("Normalized np.min(pixel_array),np.max(pixel_array):",np.min(pixel_array),np.max(pixel_array))
|
118 |
image_pil = Image.fromarray(pixel_array)
|
119 |
|
120 |
image = image_pil.convert('RGB')
|
121 |
|
122 |
-
print("In preprocess dicom:", image.size)
|
123 |
image = np.array(image)[:,:,::-1].copy()
|
124 |
|
125 |
# shape
|
126 |
-
print("In preprocess dicom-image.shape2:",image.shape)
|
127 |
|
128 |
# Collect metadata in dictionary format and convert to DataFrame
|
129 |
metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}
|
|
|
87 |
def show_preds_image(filepath):
|
88 |
results, img0, dicom_meta = detect_objects(filepath)
|
89 |
img_with_boxes, results = draw_bounding_boxes(img0, results)
|
90 |
+
print("In show_preds_image:", dicom_meta.IntanceID)
|
91 |
#return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB)
|
92 |
return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB), results, dicom_meta
|
93 |
|
|
|
111 |
|
112 |
# Normalize the pixel data to 8-bit and convert to a PIL image
|
113 |
if pixel_array.dtype != np.uint8:
|
|
|
114 |
pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype(
|
115 |
np.uint8)
|
|
|
116 |
image_pil = Image.fromarray(pixel_array)
|
117 |
|
118 |
image = image_pil.convert('RGB')
|
119 |
|
120 |
+
#print("In preprocess dicom:", image.size)
|
121 |
image = np.array(image)[:,:,::-1].copy()
|
122 |
|
123 |
# shape
|
124 |
+
#print("In preprocess dicom-image.shape2:",image.shape)
|
125 |
|
126 |
# Collect metadata in dictionary format and convert to DataFrame
|
127 |
metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'}
|