import streamlit as st from transformers import T5Tokenizer, T5ForConditionalGeneration @st.cache_resource def init_model(): model = T5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") return model, tokenizer max_source_length = 512 max_target_length = 128 model, tokenizer = init_model() st.title('T5-Small') with st.form('my_form'): text = st.text_area('Enter text:', '') cols = st.columns(3) submitted = cols[0].form_submit_button('translate') task_prefix = cols[1].text_input("input language", "translate Chinese to English: ") placeholder = st.markdown("", unsafe_allow_html=True) if submitted: with st.spinner("Translating..."): input_ids = tokenizer(f"{task_prefix}{text}", return_tensors="pt").input_ids outputs = model.generate(input_ids) placeholder.markdown(tokenizer.decode(outputs[0], skip_special_tokens=True))