wang0507 commited on
Commit
74df6d5
·
1 Parent(s): 24bad25

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -26
app.py CHANGED
@@ -3,23 +3,10 @@ import os
3
  os.system("pip install git+https://github.com/openai/whisper.git")
4
  import gradio as gr
5
  import whisper
6
- from transformers import pipeline
7
- import numpy as np
8
-
9
-
10
- p = pipeline("automatic-speech-recognition", model="openai/whisper-base.ch")
11
 
12
 
13
 
14
  model = whisper.load_model("base")
15
- transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.ch")
16
-
17
- def transcribe(audio):
18
- sr, y = audio
19
- y = y.astype(np.float32)
20
- y /= np.max(np.abs(y))
21
-
22
- return transcriber({"sampling_rate": sr, "raw": y})["text"]
23
 
24
 
25
 
@@ -35,19 +22,12 @@ def inference(audio):
35
  result = whisper.decode(model, mel, options)
36
 
37
  return result.text
38
-
39
- with gr.Blocks() as demo:
40
- gr.Markdown("Flip text or image files using this demo.")
41
- with gr.Tab("語音轉文字"):
42
- fn=inference,
43
- inputs=gr.Audio(type="filepath", label="格式可為 WAV、MP3、OGG、FLAC、AAC、M4A、WMA,單聲道、多聲道均可。"),
44
- outputs="text"
45
- with gr.Tab("Real Time Speech Recognition"):
46
- transcribe,
47
- gr.Audio(sources=["microphone"]),
48
- "text",
49
 
 
 
 
 
 
50
 
51
  # 启动 Gradio 界面
52
- demo.launch()
53
-
 
3
  os.system("pip install git+https://github.com/openai/whisper.git")
4
  import gradio as gr
5
  import whisper
 
 
 
 
 
6
 
7
 
8
 
9
  model = whisper.load_model("base")
 
 
 
 
 
 
 
 
10
 
11
 
12
 
 
22
  result = whisper.decode(model, mel, options)
23
 
24
  return result.text
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ iface = gr.Interface(
27
+ fn=inference,
28
+ inputs=gr.Audio(type="filepath", label="格式可為 WAV、MP3、OGG、FLAC、AAC、M4A、WMA,單聲道、多聲道均可。"),
29
+ outputs="text"
30
+ )
31
 
32
  # 启动 Gradio 界面
33
+ iface.launch()