File size: 718 Bytes
ff66686
 
0a92ca3
 
ff66686
 
 
 
c3dbb4c
 
 
0a92ca3
 
 
6f40988
0a92ca3
6f40988
0a92ca3
6f40988
ff66686
0a92ca3
6f40988
a869e37
6f40988
0a92ca3
 
acb3bc7
0a92ca3
c3dbb4c
 
ff66686
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import gradio as gr
import whisper



model = whisper.load_model("base")



def inference(audio):
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    _, probs = model.detect_language(mel)

    options = whisper.DecodingOptions(fp16 = False)
    result = whisper.decode(model, mel, options)

    return result.text

iface = gr.Interface(
    fn=inference,
    inputs=gr.Audio(type="filepath", label="格式可為 WAV、MP3、OGG、FLAC、AAC、M4A、WMA,單聲道、多聲道均可。"),
    outputs="text"
)

# 启动 Gradio 界面
iface.launch()