Spaces:
Runtime error
Runtime error
| from typing import Optional | |
| import numpy as np | |
| import weave | |
| class AccuracyMetric(weave.Scorer): | |
| def score(self, output: dict, label: int): | |
| return {"correct": bool(label) == output["safe"]} | |
| def summarize(self, score_rows: list) -> Optional[dict]: | |
| valid_data = [ | |
| x.get("correct") for x in score_rows if x.get("correct") is not None | |
| ] | |
| count_true = list(valid_data).count(True) | |
| int_data = [int(x) for x in valid_data] | |
| sample_mean = np.mean(int_data) if int_data else 0 | |
| sample_variance = np.var(int_data) if int_data else 0 | |
| sample_error = np.sqrt(sample_variance / len(int_data)) if int_data else 0 | |
| # Calculate precision, recall, and F1 score | |
| true_positives = count_true | |
| false_positives = len(valid_data) - count_true | |
| false_negatives = len(score_rows) - len(valid_data) | |
| precision = ( | |
| true_positives / (true_positives + false_positives) | |
| if (true_positives + false_positives) > 0 | |
| else 0 | |
| ) | |
| recall = ( | |
| true_positives / (true_positives + false_negatives) | |
| if (true_positives + false_negatives) > 0 | |
| else 0 | |
| ) | |
| f1_score = ( | |
| (2 * precision * recall) / (precision + recall) | |
| if (precision + recall) > 0 | |
| else 0 | |
| ) | |
| return { | |
| "correct": { | |
| "true_count": count_true, | |
| "false_count": len(score_rows) - count_true, | |
| "true_fraction": float(sample_mean), | |
| "false_fraction": 1.0 - float(sample_mean), | |
| "stderr": float(sample_error), | |
| "precision": precision, | |
| "recall": recall, | |
| "f1_score": f1_score, | |
| } | |
| } | |