geekyrakshit's picture
update: evaluation app
2b2ab5b
raw
history blame
1.19 kB
from typing import Optional
import torch
import weave
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers.pipelines.base import Pipeline
from ..base import Guardrail
class PromptInjectionProtectAIGuardrail(Guardrail):
model_name: str = "ProtectAI/deberta-v3-base-prompt-injection-v2"
_classifier: Optional[Pipeline] = None
def model_post_init(self, __context):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
self._classifier = pipeline(
"text-classification",
model=model,
tokenizer=tokenizer,
truncation=True,
max_length=512,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
)
@weave.op()
def classify(self, prompt: str):
return self._classifier(prompt)
@weave.op()
def predict(self, prompt: str):
response = self.classify(prompt)
return {"safe": response[0]["label"] != "INJECTION"}
@weave.op()
def guard(self, prompt: str):
return self.predict(prompt)