ash0ts's picture
add presidio model and anonymization options
0f0578b
raw
history blame
3.62 kB
from typing import Dict, Optional, ClassVar
import weave
from pydantic import BaseModel
from ...regex_model import RegexModel
from ..base import Guardrail
class RegexPIIGuardrailResponse(BaseModel):
contains_pii: bool
detected_pii_types: Dict[str, list[str]]
safe_to_process: bool
explanation: str
anonymized_text: Optional[str] = None
class RegexPIIGuardrail(Guardrail):
regex_model: RegexModel
patterns: Dict[str, str] = {}
should_anonymize: bool = False
DEFAULT_PII_PATTERNS: ClassVar[Dict[str, str]] = {
"email": r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}",
"phone_number": r"\b(?:\+?1[-.]?)?\(?(?:[0-9]{3})\)?[-.]?(?:[0-9]{3})[-.]?(?:[0-9]{4})\b",
"ssn": r"\b\d{3}[-]?\d{2}[-]?\d{4}\b",
"credit_card": r"\b\d{4}[-.]?\d{4}[-.]?\d{4}[-.]?\d{4}\b",
"ip_address": r"\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b",
"date_of_birth": r"\b\d{2}[-/]\d{2}[-/]\d{4}\b",
"passport": r"\b[A-Z]{1,2}[0-9]{6,9}\b",
"drivers_license": r"\b[A-Z]\d{7}\b",
"bank_account": r"\b\d{8,17}\b",
"zip_code": r"\b\d{5}(?:[-]\d{4})?\b"
}
def __init__(self, use_defaults: bool = True, should_anonymize: bool = False, **kwargs):
patterns = {}
if use_defaults:
patterns = self.DEFAULT_PII_PATTERNS.copy()
if kwargs.get("patterns"):
patterns.update(kwargs["patterns"])
# Create the RegexModel instance
regex_model = RegexModel(patterns=patterns)
# Initialize the base class with both the regex_model and patterns
super().__init__(
regex_model=regex_model,
patterns=patterns,
should_anonymize=should_anonymize
)
@weave.op()
def guard(self, prompt: str, **kwargs) -> RegexPIIGuardrailResponse:
"""
Check if the input prompt contains any PII based on the regex patterns.
Args:
prompt: Input text to check for PII
Returns:
RegexPIIGuardrailResponse containing PII detection results and recommendations
"""
result = self.regex_model.check(prompt)
# Create detailed explanation
explanation_parts = []
if result.matched_patterns:
explanation_parts.append("Found the following PII in the text:")
for pii_type, matches in result.matched_patterns.items():
explanation_parts.append(f"- {pii_type}: {len(matches)} instance(s)")
else:
explanation_parts.append("No PII detected in the text.")
if result.failed_patterns:
explanation_parts.append("\nChecked but did not find these PII types:")
for pattern in result.failed_patterns:
explanation_parts.append(f"- {pattern}")
# Add anonymization logic
anonymized_text = None
if getattr(self, 'should_anonymize', False) and result.matched_patterns:
anonymized_text = prompt
for pii_type, matches in result.matched_patterns.items():
for match in matches:
replacement = f"[{pii_type.upper()}]"
anonymized_text = anonymized_text.replace(match, replacement)
return RegexPIIGuardrailResponse(
contains_pii=not result.passed,
detected_pii_types=result.matched_patterns,
safe_to_process=result.passed,
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text
)