Spaces:
Running
Running
File size: 5,132 Bytes
3146d66 98a3259 a645df8 98a3259 2b2ab5b 3146d66 98a3259 a645df8 98a3259 3146d66 2b2ab5b 3146d66 2b2ab5b 3146d66 2b2ab5b 3146d66 2b2ab5b 3146d66 18b8750 2b2ab5b 98a3259 18b8750 3146d66 18b8750 98a3259 18b8750 98a3259 18b8750 98a3259 2b2ab5b 18b8750 3146d66 2b2ab5b 3146d66 2b2ab5b 3146d66 2b2ab5b 3146d66 2b2ab5b 3146d66 2b2ab5b 3146d66 2b2ab5b 3146d66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import asyncio
from importlib import import_module
import pandas as pd
import streamlit as st
import weave
from dotenv import load_dotenv
from guardrails_genie.guardrails import GuardrailManager
from guardrails_genie.llm import OpenAIModel
from guardrails_genie.metrics import AccuracyMetric
load_dotenv()
weave.init(project_name="guardrails-genie")
def initialize_session_state():
if "uploaded_file" not in st.session_state:
st.session_state.uploaded_file = None
if "dataset_name" not in st.session_state:
st.session_state.dataset_name = ""
if "preview_in_app" not in st.session_state:
st.session_state.preview_in_app = False
if "dataset_ref" not in st.session_state:
st.session_state.dataset_ref = None
if "dataset_previewed" not in st.session_state:
st.session_state.dataset_previewed = False
if "guardrail_names" not in st.session_state:
st.session_state.guardrail_names = []
if "guardrails" not in st.session_state:
st.session_state.guardrails = []
if "start_evaluation" not in st.session_state:
st.session_state.start_evaluation = False
if "evaluation_summary" not in st.session_state:
st.session_state.evaluation_summary = None
if "guardrail_manager" not in st.session_state:
st.session_state.guardrail_manager = None
def initialize_guardrail():
guardrails = []
for guardrail_name in st.session_state.guardrail_names:
if guardrail_name == "PromptInjectionSurveyGuardrail":
survey_guardrail_model = st.sidebar.selectbox(
"Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"]
)
if survey_guardrail_model:
guardrails.append(
getattr(
import_module("guardrails_genie.guardrails"),
guardrail_name,
)(llm_model=OpenAIModel(model_name=survey_guardrail_model))
)
else:
guardrails.append(
getattr(import_module("guardrails_genie.guardrails"), guardrail_name)()
)
st.session_state.guardrails = guardrails
st.session_state.guardrail_manager = GuardrailManager(guardrails=guardrails)
initialize_session_state()
st.title(":material/monitoring: Evaluation")
uploaded_file = st.sidebar.file_uploader(
"Upload the evaluation dataset as a CSV file", type="csv"
)
st.session_state.uploaded_file = uploaded_file
dataset_name = st.sidebar.text_input("Evaluation dataset name", value="")
st.session_state.dataset_name = dataset_name
preview_in_app = st.sidebar.toggle("Preview in app", value=False)
st.session_state.preview_in_app = preview_in_app
if st.session_state.uploaded_file is not None and st.session_state.dataset_name != "":
with st.expander("Evaluation Dataset Preview", expanded=True):
dataframe = pd.read_csv(st.session_state.uploaded_file)
data_list = dataframe.to_dict(orient="records")
dataset = weave.Dataset(name=st.session_state.dataset_name, rows=data_list)
st.session_state.dataset_ref = weave.publish(dataset)
entity = st.session_state.dataset_ref.entity
project = st.session_state.dataset_ref.project
dataset_name = st.session_state.dataset_name
digest = st.session_state.dataset_ref._digest
st.markdown(
f"Dataset published to [**Weave**](https://wandb.ai/{entity}/{project}/weave/objects/{dataset_name}/versions/{digest})"
)
if preview_in_app:
st.dataframe(dataframe)
st.session_state.dataset_previewed = True
if st.session_state.dataset_previewed:
guardrail_names = st.sidebar.multiselect(
"Select Guardrails",
options=[
cls_name
for cls_name, cls_obj in vars(
import_module("guardrails_genie.guardrails")
).items()
if isinstance(cls_obj, type) and cls_name != "GuardrailManager"
],
)
st.session_state.guardrail_names = guardrail_names
if st.session_state.guardrail_names != []:
initialize_guardrail()
if st.session_state.guardrail_manager is not None:
if st.sidebar.button("Start Evaluation"):
st.session_state.start_evaluation = True
if st.session_state.start_evaluation:
evaluation = weave.Evaluation(
dataset=st.session_state.dataset_ref,
scorers=[AccuracyMetric()],
streamlit_mode=True,
)
with st.expander("Evaluation Results", expanded=True):
evaluation_summary, call = asyncio.run(
evaluation.evaluate.call(
evaluation, st.session_state.guardrail_manager
)
)
st.markdown(f"[Explore evaluation in Weave]({call.ui_url})")
st.write(evaluation_summary)
st.session_state.evaluation_summary = evaluation_summary
st.session_state.start_evaluation = False
|