File size: 5,033 Bytes
573a89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a202ba5
 
573a89c
 
 
 
a202ba5
 
573a89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a202ba5
 
 
 
 
 
573a89c
 
 
 
 
 
 
 
 
 
 
a202ba5
 
 
 
 
 
573a89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import matplotlib.pyplot as plt
import streamlit as st
import torch
import torch.nn.functional as F
from datasets import load_dataset
from pydantic import BaseModel
from rich.progress import track
from sklearn.metrics import roc_auc_score, roc_curve
from transformers import AutoModelForSequenceClassification, AutoTokenizer


class DatasetArgs(BaseModel):
    dataset_address: str
    train_dataset_range: int
    test_dataset_range: int


class LlamaGuardFineTuner:
    def __init__(self, streamlit_mode: bool = False):
        self.streamlit_mode = streamlit_mode

    def load_dataset(self, dataset_args: DatasetArgs):
        dataset = load_dataset(dataset_args.dataset_address)
        self.train_dataset = (
            dataset["train"]
            if dataset_args.train_dataset_range <= 0
            or dataset_args.train_dataset_range > len(dataset["train"])
            else dataset["train"].select(range(dataset_args.train_dataset_range))
        )
        self.test_dataset = (
            dataset["test"]
            if dataset_args.test_dataset_range <= 0
            or dataset_args.test_dataset_range > len(dataset["test"])
            else dataset["test"].select(range(dataset_args.test_dataset_range))
        )

    def load_model(self, model_name: str = "meta-llama/Prompt-Guard-86M"):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForSequenceClassification.from_pretrained(model_name).to(
            self.device
        )

    def show_dataset_sample(self):
        if self.streamlit_mode:
            st.markdown("### Train Dataset Sample")
            st.dataframe(self.train_dataset.to_pandas().head())
            st.markdown("### Test Dataset Sample")
            st.dataframe(self.test_dataset.to_pandas().head())

    def evaluate_batch(
        self,
        texts,
        batch_size: int = 32,
        positive_label: int = 2,
        temperature: float = 1.0,
        truncation: bool = True,
        max_length: int = 512,
    ) -> list[float]:
        self.model.eval()
        encoded_texts = self.tokenizer(
            texts,
            padding=True,
            truncation=truncation,
            max_length=max_length,
            return_tensors="pt",
        )
        dataset = torch.utils.data.TensorDataset(
            encoded_texts["input_ids"], encoded_texts["attention_mask"]
        )
        data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size)

        scores = []
        progress_bar = (
            st.progress(0, text="Evaluating") if self.streamlit_mode else None
        )
        for i, batch in track(
            enumerate(data_loader), description="Evaluating", total=len(data_loader)
        ):
            input_ids, attention_mask = [b.to(self.device) for b in batch]
            with torch.no_grad():
                logits = self.model(
                    input_ids=input_ids, attention_mask=attention_mask
                ).logits
            scaled_logits = logits / temperature
            probabilities = F.softmax(scaled_logits, dim=-1)
            positive_class_probabilities = (
                probabilities[:, positive_label].cpu().numpy()
            )
            scores.extend(positive_class_probabilities)
            if progress_bar:
                progress_percentage = (i + 1) * 100 // len(data_loader)
                progress_bar.progress(
                    progress_percentage,
                    text=f"Evaluating batch {i + 1}/{len(data_loader)}",
                )

        return scores

    def visualize_roc_curve(self, test_scores: list[float]):
        plt.figure(figsize=(8, 6))
        test_labels = [int(elt) for elt in self.test_dataset["label"]]
        fpr, tpr, _ = roc_curve(test_labels, test_scores)
        roc_auc = roc_auc_score(test_labels, test_scores)
        plt.plot(
            fpr,
            tpr,
            color="darkorange",
            lw=2,
            label=f"ROC curve (area = {roc_auc:.3f})",
        )
        plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--")
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.05])
        plt.xlabel("False Positive Rate")
        plt.ylabel("True Positive Rate")
        plt.title("Receiver Operating Characteristic")
        plt.legend(loc="lower right")
        if self.streamlit_mode:
            st.pyplot(plt)
        else:
            plt.show()

    def evaluate_model(
        self,
        batch_size: int = 32,
        positive_label: int = 2,
        temperature: float = 3.0,
        truncation: bool = True,
        max_length: int = 512,
    ):
        test_scores = self.evaluate_batch(
            self.test_dataset["text"],
            batch_size=batch_size,
            positive_label=positive_label,
            temperature=temperature,
            truncation=truncation,
            max_length=max_length,
        )
        self.visualize_roc_curve(test_scores)
        return test_scores