Spaces:
Running
Running
File size: 7,410 Bytes
78a1bf0 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b 78a1bf0 f4fda1c fcae57e 3ad3f59 78a1bf0 f4fda1c 0f0578b 3ad3f59 78a1bf0 f4fda1c fcae57e 78a1bf0 0f0578b 78a1bf0 0f0578b fcae57e 3ad3f59 78a1bf0 0f0578b 3ad3f59 3caf047 0f0578b 3caf047 78a1bf0 fcae57e 78a1bf0 3ad3f59 78a1bf0 0f0578b 78a1bf0 3ad3f59 78a1bf0 fcae57e 0f0578b 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b f4fda1c 78a1bf0 fcae57e f4fda1c 0f0578b f4fda1c 0f0578b 78a1bf0 0f0578b 78a1bf0 0f0578b f4fda1c 0f0578b 78a1bf0 f4fda1c 78a1bf0 0f0578b f4fda1c 78a1bf0 0f0578b f4fda1c 78a1bf0 0f0578b f4fda1c 0f0578b 78a1bf0 0f0578b f4fda1c 0f0578b 78a1bf0 0f0578b 78a1bf0 fcae57e f4fda1c fcae57e 78a1bf0 fcae57e f4fda1c fcae57e 78a1bf0 fcae57e 78a1bf0 fcae57e 78a1bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from typing import Any, Dict, List, Optional
import weave
from presidio_analyzer import (
AnalyzerEngine,
Pattern,
PatternRecognizer,
RecognizerRegistry,
)
from presidio_anonymizer import AnonymizerEngine
from pydantic import BaseModel
from ..base import Guardrail
class PresidioEntityRecognitionResponse(BaseModel):
contains_entities: bool
detected_entities: Dict[str, List[str]]
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
class PresidioEntityRecognitionSimpleResponse(BaseModel):
contains_entities: bool
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
# TODO: Add support for transformers workflow and not just Spacy
class PresidioEntityRecognitionGuardrail(Guardrail):
@staticmethod
def get_available_entities() -> List[str]:
registry = RecognizerRegistry()
analyzer = AnalyzerEngine(registry=registry)
return [
recognizer.supported_entities[0]
for recognizer in analyzer.registry.recognizers
]
analyzer: AnalyzerEngine
anonymizer: AnonymizerEngine
selected_entities: List[str]
should_anonymize: bool
language: str
def __init__(
self,
selected_entities: Optional[List[str]] = None,
should_anonymize: bool = False,
language: str = "en",
deny_lists: Optional[Dict[str, List[str]]] = None,
regex_patterns: Optional[Dict[str, List[Dict[str, str]]]] = None,
custom_recognizers: Optional[List[Any]] = None,
show_available_entities: bool = False,
):
# If show_available_entities is True, print available entities
if show_available_entities:
available_entities = self.get_available_entities()
print("\nAvailable entities:")
print("=" * 25)
for entity in available_entities:
print(f"- {entity}")
print("=" * 25 + "\n")
# Initialize default values to all available entities
if selected_entities is None:
selected_entities = self.get_available_entities()
# Get available entities dynamically
available_entities = self.get_available_entities()
# Filter out invalid entities and warn user
invalid_entities = [e for e in selected_entities if e not in available_entities]
valid_entities = [e for e in selected_entities if e in available_entities]
if invalid_entities:
print(
f"\nWarning: The following entities are not available and will be ignored: {invalid_entities}"
)
print(f"Continuing with valid entities: {valid_entities}")
selected_entities = valid_entities
# Initialize analyzer with default recognizers
analyzer = AnalyzerEngine()
# Add custom recognizers if provided
if custom_recognizers:
for recognizer in custom_recognizers:
analyzer.registry.add_recognizer(recognizer)
# Add deny list recognizers if provided
if deny_lists:
for entity_type, tokens in deny_lists.items():
deny_list_recognizer = PatternRecognizer(
supported_entity=entity_type, deny_list=tokens
)
analyzer.registry.add_recognizer(deny_list_recognizer)
# Add regex pattern recognizers if provided
if regex_patterns:
for entity_type, patterns in regex_patterns.items():
presidio_patterns = [
Pattern(
name=pattern.get("name", f"pattern_{i}"),
regex=pattern["regex"],
score=pattern.get("score", 0.5),
)
for i, pattern in enumerate(patterns)
]
regex_recognizer = PatternRecognizer(
supported_entity=entity_type, patterns=presidio_patterns
)
analyzer.registry.add_recognizer(regex_recognizer)
# Initialize Presidio engines
anonymizer = AnonymizerEngine()
# Call parent class constructor with all fields
super().__init__(
analyzer=analyzer,
anonymizer=anonymizer,
selected_entities=selected_entities,
should_anonymize=should_anonymize,
language=language,
)
@weave.op()
def guard(
self, prompt: str, return_detected_types: bool = True, **kwargs
) -> PresidioEntityRecognitionResponse | PresidioEntityRecognitionSimpleResponse:
"""
Check if the input prompt contains any entities using Presidio.
Args:
prompt: The text to analyze
return_detected_types: If True, returns detailed entity type information
"""
# Analyze text for entities
analyzer_results = self.analyzer.analyze(
text=str(prompt), entities=self.selected_entities, language=self.language
)
# Group results by entity type
detected_entities = {}
for result in analyzer_results:
entity_type = result.entity_type
text_slice = prompt[result.start : result.end]
if entity_type not in detected_entities:
detected_entities[entity_type] = []
detected_entities[entity_type].append(text_slice)
# Create explanation
explanation_parts = []
if detected_entities:
explanation_parts.append("Found the following entities in the text:")
for entity_type, instances in detected_entities.items():
explanation_parts.append(
f"- {entity_type}: {len(instances)} instance(s)"
)
else:
explanation_parts.append("No entities detected in the text.")
# Add information about what was checked
explanation_parts.append("\nChecked for these entity types:")
for entity in self.selected_entities:
explanation_parts.append(f"- {entity}")
# Anonymize if requested
anonymized_text = None
if self.should_anonymize and detected_entities:
anonymized_result = self.anonymizer.anonymize(
text=prompt, analyzer_results=analyzer_results
)
anonymized_text = anonymized_result.text
if return_detected_types:
return PresidioEntityRecognitionResponse(
contains_entities=bool(detected_entities),
detected_entities=detected_entities,
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text,
)
else:
return PresidioEntityRecognitionSimpleResponse(
contains_entities=bool(detected_entities),
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text,
)
@weave.op()
def predict(
self, prompt: str, return_detected_types: bool = True, **kwargs
) -> PresidioEntityRecognitionResponse | PresidioEntityRecognitionSimpleResponse:
return self.guard(prompt, return_detected_types=return_detected_types, **kwargs)
|