File size: 5,388 Bytes
63bfd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import asyncio
from typing import Any

import weave
from guardrails import Guard
from guardrails.hub import SecretsPresent
from llm_guard.input_scanners import Secrets
from llm_guard.util import configure_logger

from guardrails_genie.guardrails import GuardrailManager
from guardrails_genie.guardrails.base import Guardrail
from guardrails_genie.guardrails.secrets_detection import (
    SecretsDetectionResponse,
    SecretsDetectionSimpleResponse,
    SecretsDetectionGuardrail,
)
from guardrails_genie.metrics import AccuracyMetric

logger = configure_logger(log_level="ERROR")


class GuardrailsAISecretsDetector(Guardrail):
    validator: Any

    def __init__(self):
        validator = Guard().use(SecretsPresent, on_fail="fix")
        super().__init__(validator=validator)

    def scan(self, text: str) -> dict:
        response = self.validator.validate(text)
        if response.validation_summaries:
            summary = response.validation_summaries[0]
            return {
                "has_secret": True,
                "detected_secrets": {
                    str(k): v
                    for k, v in enumerate(
                        summary.failure_reason.splitlines()[1:], start=1
                    )
                },
                "explanation": summary.failure_reason,
                "modified_prompt": response.validated_output,
                "risk_score": 1.0,
            }
        else:
            return {
                "has_secret": False,
                "detected_secrets": None,
                "explanation": "No secrets detected in the text.",
                "modified_prompt": response.validated_output,
                "risk_score": 0.0,
            }

    @weave.op
    def guard(
        self,
        prompt: str,
        return_detected_secrets: bool = True,
        **kwargs,
    ) -> SecretsDetectionResponse | SecretsDetectionResponse:
        results = self.scan(prompt)

        if return_detected_secrets:
            return SecretsDetectionResponse(
                contains_secrets=results["has_secret"],
                detected_secrets=results["detected_secrets"],
                explanation=results["explanation"],
                redacted_text=results["modified_prompt"],
                risk_score=results["risk_score"],
            )
        else:
            return SecretsDetectionSimpleResponse(
                contains_secrets=not results["has_secret"],
                explanation=results["explanation"],
                redacted_text=results["modified_prompt"],
                risk_score=results["risk_score"],
            )


class LLMGuardSecretsDetector(Guardrail):
    validator: Any

    def __init__(self):
        validator = Secrets(redact_mode="all")
        super().__init__(validator=validator)

    def scan(self, text: str) -> dict:
        sanitized_prompt, is_valid, risk_score = self.validator.scan(text)
        if is_valid:
            return {
                "has_secret": not is_valid,
                "detected_secrets": None,
                "explanation": "No secrets detected in the text.",
                "modified_prompt": sanitized_prompt,
                "risk_score": risk_score,
            }
        else:
            return {
                "has_secret": not is_valid,
                "detected_secrets": {},
                "explanation": "This library does not return detected secrets.",
                "modified_prompt": sanitized_prompt,
                "risk_score": risk_score,
            }

    @weave.op
    def guard(
        self,
        prompt: str,
        return_detected_secrets: bool = True,
        **kwargs,
    ) -> SecretsDetectionResponse | SecretsDetectionResponse:
        results = self.scan(prompt)
        if return_detected_secrets:
            return SecretsDetectionResponse(
                contains_secrets=results["has_secret"],
                detected_secrets=results["detected_secrets"],
                explanation=results["explanation"],
                redacted_text=results["modified_prompt"],
                risk_score=results["risk_score"],
            )
        else:
            return SecretsDetectionSimpleResponse(
                contains_secrets=not results["has_secret"],
                explanation=results["explanation"],
                redacted_text=results["modified_prompt"],
                risk_score=results["risk_score"],
            )


def main():
    client = weave.init("parambharat/secrets-detection")
    dataset = weave.ref("secrets-detection-benchmark:latest").get()
    llm_guard_guardrail = LLMGuardSecretsDetector()
    guardrails_ai_guardrail = GuardrailsAISecretsDetector()
    guardrails_genie_guardrail = SecretsDetectionGuardrail()

    all_guards = [
        llm_guard_guardrail,
        guardrails_ai_guardrail,
        guardrails_genie_guardrail,
    ]
    evaluation = weave.Evaluation(
        dataset=dataset.rows,
        scorers=[AccuracyMetric()],
    )

    for guard in all_guards:
        name = guard.__class__.__name__
        guardrail_manager = GuardrailManager(
            guardrails=[
                guard,
            ]
        )

        results = asyncio.run(
            evaluation.evaluate(
                guardrail_manager,
                __weave={"display_name": f"{name}"},
            )
        )
        print(results)


if __name__ == "__main__":
    main()