File size: 8,350 Bytes
084dab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from datasets import load_dataset
from typing import Dict, List, Tuple
import random
from tqdm import tqdm
import json
from pathlib import Path
import weave

def load_ai4privacy_dataset(num_samples: int = 100, split: str = "validation") -> List[Dict]:
    """
    Load and prepare samples from the ai4privacy dataset.
    
    Args:
        num_samples: Number of samples to evaluate
        split: Dataset split to use ("train" or "validation")
    
    Returns:
        List of prepared test cases
    """
    # Load the dataset
    dataset = load_dataset("ai4privacy/pii-masking-400k")
    
    # Get the specified split
    data_split = dataset[split]
    
    # Randomly sample entries if num_samples is less than total
    if num_samples < len(data_split):
        indices = random.sample(range(len(data_split)), num_samples)
        samples = [data_split[i] for i in indices]
    else:
        samples = data_split
    
    # Convert to test case format
    test_cases = []
    for sample in samples:
        # Extract entities from privacy_mask
        entities: Dict[str, List[str]] = {}
        for entity in sample['privacy_mask']:
            label = entity['label']
            value = entity['value']
            if label not in entities:
                entities[label] = []
            entities[label].append(value)
        
        test_case = {
            "description": f"AI4Privacy Sample (ID: {sample['uid']})",
            "input_text": sample['source_text'],
            "expected_entities": entities,
            "masked_text": sample['masked_text'],
            "language": sample['language'],
            "locale": sample['locale']
        }
        test_cases.append(test_case)
    
    return test_cases

@weave.op()
def evaluate_model(guardrail, test_cases: List[Dict]) -> Tuple[Dict, List[Dict]]:
    """
    Evaluate a model on the test cases.
    
    Args:
        guardrail: Entity recognition guardrail to evaluate
        test_cases: List of test cases
    
    Returns:
        Tuple of (metrics dict, detailed results list)
    """
    metrics = {
        "total": len(test_cases),
        "passed": 0,
        "failed": 0,
        "entity_metrics": {}  # Will store precision/recall per entity type
    }
    
    detailed_results = []
    
    for test_case in tqdm(test_cases, desc="Evaluating samples"):
        # Run detection
        result = guardrail.guard(test_case['input_text'])
        detected = result.detected_entities
        expected = test_case['expected_entities']
        
        # Track entity-level metrics
        all_entity_types = set(list(detected.keys()) + list(expected.keys()))
        entity_results = {}
        
        for entity_type in all_entity_types:
            detected_set = set(detected.get(entity_type, []))
            expected_set = set(expected.get(entity_type, []))
            
            # Calculate metrics
            true_positives = len(detected_set & expected_set)
            false_positives = len(detected_set - expected_set)
            false_negatives = len(expected_set - detected_set)
            
            precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
            recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
            f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
            
            entity_results[entity_type] = {
                "precision": precision,
                "recall": recall,
                "f1": f1,
                "true_positives": true_positives,
                "false_positives": false_positives,
                "false_negatives": false_negatives
            }
            
            # Aggregate metrics
            if entity_type not in metrics["entity_metrics"]:
                metrics["entity_metrics"][entity_type] = {
                    "total_true_positives": 0,
                    "total_false_positives": 0,
                    "total_false_negatives": 0
                }
            metrics["entity_metrics"][entity_type]["total_true_positives"] += true_positives
            metrics["entity_metrics"][entity_type]["total_false_positives"] += false_positives
            metrics["entity_metrics"][entity_type]["total_false_negatives"] += false_negatives
        
        # Store detailed result
        detailed_result = {
            "id": test_case.get("description", ""),
            "language": test_case.get("language", ""),
            "locale": test_case.get("locale", ""),
            "input_text": test_case["input_text"],
            "expected_entities": expected,
            "detected_entities": detected,
            "entity_metrics": entity_results,
            "anonymized_text": result.anonymized_text if result.anonymized_text else None
        }
        detailed_results.append(detailed_result)
        
        # Update pass/fail counts
        if all(entity_results[et]["f1"] == 1.0 for et in entity_results):
            metrics["passed"] += 1
        else:
            metrics["failed"] += 1
    
    # Calculate final entity metrics
    for entity_type, counts in metrics["entity_metrics"].items():
        tp = counts["total_true_positives"]
        fp = counts["total_false_positives"]
        fn = counts["total_false_negatives"]
        
        precision = tp / (tp + fp) if (tp + fp) > 0 else 0
        recall = tp / (tp + fn) if (tp + fn) > 0 else 0
        f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
        
        metrics["entity_metrics"][entity_type].update({
            "precision": precision,
            "recall": recall,
            "f1": f1
        })
    
    return metrics, detailed_results

def save_results(metrics: Dict, detailed_results: List[Dict], model_name: str, output_dir: str = "evaluation_results"):
    """Save evaluation results to files"""
    output_dir = Path(output_dir)
    output_dir.mkdir(exist_ok=True)
    
    # Save metrics summary
    with open(output_dir / f"{model_name}_metrics.json", "w") as f:
        json.dump(metrics, f, indent=2)
    
    # Save detailed results
    with open(output_dir / f"{model_name}_detailed_results.json", "w") as f:
        json.dump(detailed_results, f, indent=2)

def print_metrics_summary(metrics: Dict):
    """Print a summary of the evaluation metrics"""
    print("\nEvaluation Summary")
    print("=" * 80)
    print(f"Total Samples: {metrics['total']}")
    print(f"Passed: {metrics['passed']}")
    print(f"Failed: {metrics['failed']}")
    print(f"Success Rate: {(metrics['passed']/metrics['total'])*100:.1f}%")
    
    print("\nEntity-level Metrics:")
    print("-" * 80)
    print(f"{'Entity Type':<20} {'Precision':>10} {'Recall':>10} {'F1':>10}")
    print("-" * 80)
    for entity_type, entity_metrics in metrics["entity_metrics"].items():
        print(f"{entity_type:<20} {entity_metrics['precision']:>10.2f} {entity_metrics['recall']:>10.2f} {entity_metrics['f1']:>10.2f}")

def main():
    """Main evaluation function"""
    weave.init("guardrails-genie-pii-evaluation")
    
    # Load test cases
    test_cases = load_ai4privacy_dataset(num_samples=100)
    
    # Initialize models to evaluate
    models = {
        "regex": RegexEntityRecognitionGuardrail(should_anonymize=True),
        "presidio": PresidioEntityRecognitionGuardrail(should_anonymize=True),
        "transformers": TransformersEntityRecognitionGuardrail(should_anonymize=True)
    }
    
    # Evaluate each model
    for model_name, guardrail in models.items():
        print(f"\nEvaluating {model_name} model...")
        metrics, detailed_results = evaluate_model(guardrail, test_cases)
        
        # Print and save results
        print_metrics_summary(metrics)
        save_results(metrics, detailed_results, model_name)

if __name__ == "__main__":
    from guardrails_genie.guardrails.entity_recognition.regex_entity_recognition_guardrail import RegexEntityRecognitionGuardrail
    from guardrails_genie.guardrails.entity_recognition.presidio_entity_recognition_guardrail import PresidioEntityRecognitionGuardrail
    from guardrails_genie.guardrails.entity_recognition.transformers_entity_recognition_guardrail import TransformersEntityRecognitionGuardrail
    
    main()