# Copyright 2024 EasyAnimate Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from dataclasses import dataclass from diffusers import DiffusionPipeline from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback from diffusers.image_processor import VaeImageProcessor from diffusers.models import AutoencoderKL, HunyuanDiT2DModel from diffusers.models.embeddings import (get_2d_rotary_pos_embed, get_3d_rotary_pos_embed) from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.safety_checker import \ StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, FlowMatchEulerDiscreteScheduler from diffusers.utils import (BACKENDS_MAPPING, BaseOutput, deprecate, is_bs4_available, is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring) from diffusers.utils.torch_utils import randn_tensor from einops import rearrange from PIL import Image from tqdm import tqdm from transformers import (BertModel, BertTokenizer, CLIPImageProcessor, Qwen2Tokenizer, Qwen2VLForConditionalGeneration, CLIPVisionModelWithProjection, T5EncoderModel, T5Tokenizer) from ..models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import EasyAnimateInpaintPipeline >>> from diffusers.easyanimate.pipeline_easyanimate_inpaint import get_image_to_video_latent >>> from diffusers.utils import export_to_video, load_image >>> pipe = EasyAnimateInpaintPipeline.from_pretrained("alibaba-pai/EasyAnimateV5.1-12b-zh-InP", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> prompt = "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot." >>> validation_image_start = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg" ... ) >>> validation_image_end = None >>> sample_size = (576, 448) >>> video_length = 49 >>> input_video, input_video_mask, _ = get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size) >>> video = pipe(prompt, video_length=video_length, negative_prompt="bad detailed", height=sample_size[0], width=sample_size[1], input_video=input_video, mask_video=input_video_mask) >>> export_to_video(video.sample[0], "output.mp4", fps=8) ``` """ # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): tw = tgt_width th = tgt_height h, w = src r = h / w if r > (th / tw): resize_height = th resize_width = int(round(th / h * w)) else: resize_width = tw resize_height = int(round(tw / w * h)) crop_top = int(round((th - resize_height) / 2.0)) crop_left = int(round((tw - resize_width) / 2.0)) return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg # Resize mask information in magvit def resize_mask(mask, latent, process_first_frame_only=True): latent_size = latent.size() if process_first_frame_only: target_size = list(latent_size[2:]) target_size[0] = 1 first_frame_resized = F.interpolate( mask[:, :, 0:1, :, :], size=target_size, mode='trilinear', align_corners=False ) target_size = list(latent_size[2:]) target_size[0] = target_size[0] - 1 if target_size[0] != 0: remaining_frames_resized = F.interpolate( mask[:, :, 1:, :, :], size=target_size, mode='trilinear', align_corners=False ) resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) else: resized_mask = first_frame_resized else: target_size = list(latent_size[2:]) resized_mask = F.interpolate( mask, size=target_size, mode='trilinear', align_corners=False ) return resized_mask ## Add noise to reference video def add_noise_to_reference_video(image, ratio=None): if ratio is None: sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device) sigma = torch.exp(sigma).to(image.dtype) else: sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio image_noise = torch.randn_like(image) * sigma[:, None, None, None, None] image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise) image = image + image_noise return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps @dataclass class EasyAnimatePipelineOutput(BaseOutput): r""" Output class for EasyAnimate pipelines. Args: frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)`. """ frames: torch.Tensor class EasyAnimateInpaintPipeline(DiffusionPipeline): r""" Pipeline for text-to-video generation using EasyAnimate. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1. EasyAnimate uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by HunyuanDiT team) in V5. Args: vae ([`AutoencoderKLMagvit`]): Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations. text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]): EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1. EasyAnimate uses [bilingual CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers) in V5. tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]): A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text. transformer ([`EasyAnimateTransformer3DModel`]): The EasyAnimate model designed by EasyAnimate Team. text_encoder_2 (`T5EncoderModel`): EasyAnimate does not use text_encoder_2 in V5.1. EasyAnimate uses [mT5](https://huggingface.co/google/mt5-base) embedder in V5. tokenizer_2 (`T5Tokenizer`): The tokenizer for the mT5 embedder. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents. clip_image_processor (`CLIPImageProcessor`): The CLIP image embedder. clip_image_encoder (`CLIPVisionModelWithProjection`): The image processor for the CLIP image embedder. """ model_cpu_offload_seq = "text_encoder->text_encoder_2->clip_image_encoder->transformer->vae" _optional_components = [ "text_encoder_2", "tokenizer_2", "text_encoder", "tokenizer", "clip_image_encoder", ] _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "prompt_embeds_2", "negative_prompt_embeds_2", ] def __init__( self, vae: AutoencoderKLMagvit, text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel], tokenizer: Union[Qwen2Tokenizer, BertTokenizer], text_encoder_2: Optional[Union[T5EncoderModel, Qwen2VLForConditionalGeneration]], tokenizer_2: Optional[Union[T5Tokenizer, Qwen2Tokenizer]], transformer: EasyAnimateTransformer3DModel, scheduler: FlowMatchEulerDiscreteScheduler, clip_image_processor: CLIPImageProcessor = None, clip_image_encoder: CLIPVisionModelWithProjection = None, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, text_encoder_2=text_encoder_2, clip_image_processor=clip_image_processor, clip_image_encoder=clip_image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.mask_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True ) def enable_sequential_cpu_offload(self, *args, **kwargs): super().enable_sequential_cpu_offload(*args, **kwargs) if hasattr(self.transformer, "clip_projection") and self.transformer.clip_projection is not None: import accelerate accelerate.hooks.remove_hook_from_module(self.transformer.clip_projection, recurse=True) self.transformer.clip_projection = self.transformer.clip_projection.to("cuda") def encode_prompt( self, prompt: str, device: torch.device, dtype: torch.dtype, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, max_sequence_length: Optional[int] = None, text_encoder_index: int = 0, actual_max_sequence_length: int = 256 ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device dtype (`torch.dtype`): torch dtype num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the prompt. Required when `prompt_embeds` is passed directly. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. text_encoder_index (`int`, *optional*): Index of the text encoder to use. `0` for clip and `1` for T5. """ tokenizers = [self.tokenizer, self.tokenizer_2] text_encoders = [self.text_encoder, self.text_encoder_2] tokenizer = tokenizers[text_encoder_index] text_encoder = text_encoders[text_encoder_index] if max_sequence_length is None: if text_encoder_index == 0: max_length = min(self.tokenizer.model_max_length, actual_max_sequence_length) if text_encoder_index == 1: max_length = min(self.tokenizer_2.model_max_length, actual_max_sequence_length) else: max_length = max_sequence_length if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: if type(tokenizer) in [BertTokenizer, T5Tokenizer]: text_inputs = tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > actual_max_sequence_length: reprompt = tokenizer.batch_decode(text_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True) text_inputs = tokenizer( reprompt, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): _actual_max_sequence_length = min(tokenizer.model_max_length, actual_max_sequence_length) removed_text = tokenizer.batch_decode(untruncated_ids[:, _actual_max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {_actual_max_sequence_length} tokens: {removed_text}" ) prompt_attention_mask = text_inputs.attention_mask.to(device) if self.transformer.config.enable_text_attention_mask: prompt_embeds = text_encoder( text_input_ids.to(device), attention_mask=prompt_attention_mask, ) else: prompt_embeds = text_encoder( text_input_ids.to(device) ) prompt_embeds = prompt_embeds[0] prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) else: if prompt is not None and isinstance(prompt, str): messages = [ { "role": "user", "content": [{"type": "text", "text": prompt}], } ] else: messages = [ { "role": "user", "content": [{"type": "text", "text": _prompt}], } for _prompt in prompt ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) text_inputs = tokenizer( text=[text], padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, padding_side="right", return_tensors="pt", ) text_inputs = text_inputs.to(text_encoder.device) text_input_ids = text_inputs.input_ids prompt_attention_mask = text_inputs.attention_mask if self.transformer.config.enable_text_attention_mask: # Inference: Generation of the output prompt_embeds = text_encoder( input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True).hidden_states[-2] else: raise ValueError("LLM needs attention_mask") prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.to(device=device) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: if type(tokenizer) in [BertTokenizer, T5Tokenizer]: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_input.input_ids if uncond_input_ids.shape[-1] > actual_max_sequence_length: reuncond_tokens = tokenizer.batch_decode(uncond_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True) uncond_input = tokenizer( reuncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, return_tensors="pt", ) uncond_input_ids = uncond_input.input_ids negative_prompt_attention_mask = uncond_input.attention_mask.to(device) if self.transformer.config.enable_text_attention_mask: negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask, ) else: negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device) ) negative_prompt_embeds = negative_prompt_embeds[0] negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) else: if negative_prompt is not None and isinstance(negative_prompt, str): messages = [ { "role": "user", "content": [{"type": "text", "text": negative_prompt}], } ] else: messages = [ { "role": "user", "content": [{"type": "text", "text": _negative_prompt}], } for _negative_prompt in negative_prompt ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) text_inputs = tokenizer( text=[text], padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, padding_side="right", return_tensors="pt", ) text_inputs = text_inputs.to(text_encoder.device) text_input_ids = text_inputs.input_ids negative_prompt_attention_mask = text_inputs.attention_mask if self.transformer.config.enable_text_attention_mask: # Inference: Generation of the output negative_prompt_embeds = text_encoder( input_ids=text_input_ids, attention_mask=negative_prompt_attention_mask, output_hidden_states=True).hidden_states[-2] else: raise ValueError("LLM needs attention_mask") negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.to(device=device) return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, prompt_embeds_2=None, negative_prompt_embeds_2=None, prompt_attention_mask_2=None, negative_prompt_attention_mask_2=None, callback_on_step_end_tensor_inputs=None, ): if height % 16 != 0 or width % 16 != 0: raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is None and prompt_embeds_2 is None: raise ValueError( "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: raise ValueError( "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: raise ValueError( "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but" f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`" f" {negative_prompt_embeds_2.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start def prepare_mask_latents( self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance, noise_aug_strength ): # resize the mask to latents shape as we concatenate the mask to the latents # we do that before converting to dtype to avoid breaking in case we're using cpu_offload # and half precision if mask is not None: mask = mask.to(device=device, dtype=dtype) if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: bs = 1 new_mask = [] for i in range(0, mask.shape[0], bs): mask_bs = mask[i : i + bs] mask_bs = self.vae.encode(mask_bs)[0] mask_bs = mask_bs.mode() new_mask.append(mask_bs) mask = torch.cat(new_mask, dim = 0) mask = mask * self.vae.config.scaling_factor else: if mask.shape[1] == 4: mask = mask else: video_length = mask.shape[2] mask = rearrange(mask, "b c f h w -> (b f) c h w") mask = self._encode_vae_image(mask, generator=generator) mask = rearrange(mask, "(b f) c h w -> b c f h w", f=video_length) if masked_image is not None: masked_image = masked_image.to(device=device, dtype=dtype) if self.transformer.config.add_noise_in_inpaint_model: masked_image = add_noise_to_reference_video(masked_image, ratio=noise_aug_strength) if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: bs = 1 new_mask_pixel_values = [] for i in range(0, masked_image.shape[0], bs): mask_pixel_values_bs = masked_image[i : i + bs] mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0] mask_pixel_values_bs = mask_pixel_values_bs.mode() new_mask_pixel_values.append(mask_pixel_values_bs) masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0) masked_image_latents = masked_image_latents * self.vae.config.scaling_factor else: if masked_image.shape[1] == 4: masked_image_latents = masked_image else: video_length = masked_image.shape[2] masked_image = rearrange(masked_image, "b c f h w -> (b f) c h w") masked_image_latents = self._encode_vae_image(masked_image, generator=generator) masked_image_latents = rearrange(masked_image_latents, "(b f) c h w -> b c f h w", f=video_length) # aligning device to prevent device errors when concating it with the latent model input masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) else: masked_image_latents = None return mask, masked_image_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, video_length, dtype, device, generator, latents=None, video=None, timestep=None, is_strength_max=True, return_noise=False, return_video_latents=False, ): if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: if self.vae.cache_mag_vae: mini_batch_encoder = self.vae.mini_batch_encoder mini_batch_decoder = self.vae.mini_batch_decoder shape = (batch_size, num_channels_latents, int((video_length - 1) // mini_batch_encoder * mini_batch_decoder + 1) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) else: mini_batch_encoder = self.vae.mini_batch_encoder mini_batch_decoder = self.vae.mini_batch_decoder shape = (batch_size, num_channels_latents, int(video_length // mini_batch_encoder * mini_batch_decoder) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) else: shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if return_video_latents or (latents is None and not is_strength_max): video = video.to(device=device, dtype=dtype) if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: bs = 1 new_video = [] for i in range(0, video.shape[0], bs): video_bs = video[i : i + bs] video_bs = self.vae.encode(video_bs)[0] video_bs = video_bs.sample() new_video.append(video_bs) video = torch.cat(new_video, dim = 0) video = video * self.vae.config.scaling_factor else: if video.shape[1] == 4: video = video else: video_length = video.shape[2] video = rearrange(video, "b c f h w -> (b f) c h w") video = self._encode_vae_image(video, generator=generator) video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1) video_latents = video_latents.to(device=device, dtype=dtype) if latents is None: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # if strength is 1. then initialise the latents to noise, else initial to image + noise if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): latents = noise if is_strength_max else self.scheduler.scale_noise(video_latents, timestep, noise) else: latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep) # if pure noise then scale the initial latents by the Scheduler's init sigma if hasattr(self.scheduler, "init_noise_sigma"): latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents else: if hasattr(self.scheduler, "init_noise_sigma"): noise = latents.to(device) latents = noise * self.scheduler.init_noise_sigma else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler outputs = (latents,) if return_noise: outputs += (noise,) if return_video_latents: outputs += (video_latents,) return outputs def smooth_output(self, video, mini_batch_encoder, mini_batch_decoder): if video.size()[2] <= mini_batch_encoder: return video prefix_index_before = mini_batch_encoder // 2 prefix_index_after = mini_batch_encoder - prefix_index_before pixel_values = video[:, :, prefix_index_before:-prefix_index_after] # Encode middle videos latents = self.vae.encode(pixel_values)[0] latents = latents.mode() # Decode middle videos middle_video = self.vae.decode(latents)[0] video[:, :, prefix_index_before:-prefix_index_after] = (video[:, :, prefix_index_before:-prefix_index_after] + middle_video) / 2 return video def decode_latents(self, latents): video_length = latents.shape[2] latents = 1 / self.vae.config.scaling_factor * latents if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: mini_batch_encoder = self.vae.mini_batch_encoder mini_batch_decoder = self.vae.mini_batch_decoder video = self.vae.decode(latents)[0] video = video.clamp(-1, 1) if not self.vae.cache_compression_vae and not self.vae.cache_mag_vae: video = self.smooth_output(video, mini_batch_encoder, mini_batch_decoder).cpu().clamp(-1, 1) else: latents = rearrange(latents, "b c f h w -> (b f) c h w") video = [] for frame_idx in tqdm(range(latents.shape[0])): video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample) video = torch.cat(video) video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) video = (video / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 video = video.cpu().float().numpy() return video @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, video_length: Optional[int] = None, video: Union[torch.FloatTensor] = None, mask_video: Union[torch.FloatTensor] = None, masked_video_latents: Union[torch.FloatTensor] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_2: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_2: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, prompt_attention_mask_2: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask_2: Optional[torch.Tensor] = None, output_type: Optional[str] = "latent", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = (1024, 1024), target_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), clip_image: Image = None, clip_apply_ratio: float = 0.40, strength: float = 1.0, noise_aug_strength: float = 0.0563, comfyui_progressbar: bool = False, timesteps: Optional[List[int]] = None, ): r""" The call function to the pipeline for generation with HunyuanDiT. Examples: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. video_length (`int`, *optional*): Length of the video to be generated in seconds. This parameter influences the number of frames and continuity of generated content. video (`torch.FloatTensor`, *optional*): A tensor representing an input video, which can be modified depending on the prompts provided. mask_video (`torch.FloatTensor`, *optional*): A tensor to specify areas of the video to be masked (omitted from generation). masked_video_latents (`torch.FloatTensor`, *optional*): Latents from masked portions of the video, utilized during image generation. height (`int`, *optional*): The height in pixels of the generated image or video frames. width (`int`, *optional*): The width in pixels of the generated image or video frames. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image but slower inference time. This parameter is modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 5.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is effective when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to exclude in image generation. If not defined, you need to provide `negative_prompt_embeds`. This parameter is ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): A parameter defined in the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`] and is ignored in other schedulers. It adjusts noise level during the inference process. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) for setting random seeds which helps in making generation deterministic. latents (`torch.Tensor`, *optional*): A pre-computed latent representation which can be used to guide the generation process. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, embeddings are generated from the `prompt` input argument. prompt_embeds_2 (`torch.Tensor`, *optional*): Secondary set of pre-generated text embeddings, useful for advanced prompt weighting. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings, aiding in fine-tuning what should not be represented in the outputs. If not provided, embeddings are generated from the `negative_prompt` argument. negative_prompt_embeds_2 (`torch.Tensor`, *optional*): Secondary set of pre-generated negative text embeddings for further control. prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask guiding the focus of the model on specific parts of the prompt text. Required when using `prompt_embeds`. prompt_attention_mask_2 (`torch.Tensor`, *optional*): Attention mask for the secondary prompt embedding. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the negative prompt, needed when `negative_prompt_embeds` are used. negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): Attention mask for the secondary negative prompt embedding. output_type (`str`, *optional*, defaults to `"latent"`): The output format of the generated image. Choose between `PIL.Image` and `np.array` to define how you want the results to be formatted. return_dict (`bool`, *optional*, defaults to `True`): If set to `True`, a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] will be returned; otherwise, a tuple containing the generated images and safety flags will be returned. callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A callback function (or a list of them) that will be executed at the end of each denoising step, allowing for custom processing during generation. callback_on_step_end_tensor_inputs (`List[str]`, *optional*): Specifies which tensor inputs should be included in the callback function. If not defined, all tensor inputs will be passed, facilitating enhanced logging or monitoring of the generation process. guidance_rescale (`float`, *optional*, defaults to 0.0): Rescale parameter for adjusting noise configuration based on guidance rescale. Based on findings from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): The original dimensions of the image. Used to compute time ids during the generation process. target_size (`Tuple[int, int]`, *optional*): The targeted dimensions of the generated image, also utilized in the time id calculations. crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): Coordinates defining the top left corner of any cropping, utilized while calculating the time ids. clip_image (`Image`, *optional*): An optional image to assist in the generation process. It may be used as an additional visual cue. clip_apply_ratio (`float`, *optional*, defaults to 0.40): Ratio indicating how much influence the clip image should exert over the generated content. strength (`float`, *optional*, defaults to 1.0): Affects the overall styling or quality of the generated output. Values closer to 1 usually provide direct adherence to prompts. comfyui_progressbar (`bool`, *optional*, defaults to `False`): Enables a progress bar in ComfyUI, providing visual feedback during the generation process. Examples: # Example usage of the function for generating images based on prompts. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: Returns either a structured output containing generated images and their metadata when `return_dict` is `True`, or a simpler tuple, where the first element is a list of generated images and the second element indicates if any of them contain "not-safe-for-work" (NSFW) content. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. default height and width height = int(height // 16 * 16) width = int(width // 16 * 16) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.text_encoder_2 is not None: dtype = self.text_encoder_2.dtype else: dtype = self.transformer.dtype # 3. Encode input prompt ( prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) = self.encode_prompt( prompt=prompt, device=device, dtype=dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, text_encoder_index=0, ) if self.tokenizer_2 is not None: ( prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, ) = self.encode_prompt( prompt=prompt, device=device, dtype=dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds_2, negative_prompt_embeds=negative_prompt_embeds_2, prompt_attention_mask=prompt_attention_mask_2, negative_prompt_attention_mask=negative_prompt_attention_mask_2, text_encoder_index=1, ) else: prompt_embeds_2 = None negative_prompt_embeds_2 = None prompt_attention_mask_2 = None negative_prompt_attention_mask_2 = None # 4. set timesteps if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, mu=1) else: timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) timesteps, num_inference_steps = self.get_timesteps( num_inference_steps=num_inference_steps, strength=strength, device=device ) if comfyui_progressbar: from comfy.utils import ProgressBar pbar = ProgressBar(num_inference_steps + 3) # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise is_strength_max = strength == 1.0 if video is not None: video_length = video.shape[2] init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width) init_video = init_video.to(dtype=torch.float32) init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length) else: init_video = None # Prepare latent variables num_channels_latents = self.vae.config.latent_channels num_channels_transformer = self.transformer.config.in_channels return_image_latents = num_channels_transformer == num_channels_latents # 5. Prepare latents. latents_outputs = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, video_length, dtype, device, generator, latents, video=init_video, timestep=latent_timestep, is_strength_max=is_strength_max, return_noise=True, return_video_latents=return_image_latents, ) if return_image_latents: latents, noise, image_latents = latents_outputs else: latents, noise = latents_outputs if comfyui_progressbar: pbar.update(1) # 6. Prepare clip latents if it needs. if clip_image is not None and self.transformer.enable_clip_in_inpaint: inputs = self.clip_image_processor(images=clip_image, return_tensors="pt") inputs["pixel_values"] = inputs["pixel_values"].to(device, dtype=dtype) if self.transformer.config.get("position_of_clip_embedding", "full") == "full": clip_encoder_hidden_states = self.clip_image_encoder(**inputs).last_hidden_state[:, 1:] clip_encoder_hidden_states_neg = torch.zeros( [ batch_size, int(self.clip_image_encoder.config.image_size / self.clip_image_encoder.config.patch_size) ** 2, int(self.clip_image_encoder.config.hidden_size) ] ).to(device, dtype=dtype) else: clip_encoder_hidden_states = self.clip_image_encoder(**inputs).image_embeds clip_encoder_hidden_states_neg = torch.zeros([batch_size, 768]).to(device, dtype=dtype) clip_attention_mask = torch.ones([batch_size, self.transformer.n_query]).to(device, dtype=dtype) clip_attention_mask_neg = torch.zeros([batch_size, self.transformer.n_query]).to(device, dtype=dtype) clip_encoder_hidden_states_input = torch.cat([clip_encoder_hidden_states_neg, clip_encoder_hidden_states]) if self.do_classifier_free_guidance else clip_encoder_hidden_states clip_attention_mask_input = torch.cat([clip_attention_mask_neg, clip_attention_mask]) if self.do_classifier_free_guidance else clip_attention_mask elif clip_image is None and num_channels_transformer != num_channels_latents and self.transformer.enable_clip_in_inpaint: if self.transformer.config.get("position_of_clip_embedding", "full") == "full": clip_encoder_hidden_states = torch.zeros( [ batch_size, int(self.clip_image_encoder.config.image_size / self.clip_image_encoder.config.patch_size) ** 2, int(self.clip_image_encoder.config.hidden_size) ] ).to(device, dtype=dtype) else: clip_encoder_hidden_states = torch.zeros([batch_size, 768]).to(device, dtype=dtype) clip_attention_mask = torch.zeros([batch_size, self.transformer.n_query]) clip_attention_mask = clip_attention_mask.to(device, dtype=dtype) clip_encoder_hidden_states_input = torch.cat([clip_encoder_hidden_states] * 2) if self.do_classifier_free_guidance else clip_encoder_hidden_states clip_attention_mask_input = torch.cat([clip_attention_mask] * 2) if self.do_classifier_free_guidance else clip_attention_mask else: clip_encoder_hidden_states_input = None clip_attention_mask_input = None if comfyui_progressbar: pbar.update(1) # 7. Prepare inpaint latents if it needs. if mask_video is not None: if self.transformer.config.get("enable_zero_in_inpaint", True) and (mask_video == 255).all(): # Use zero latents if we want to t2v. mask = torch.zeros_like(latents).to(device, dtype) if self.transformer.resize_inpaint_mask_directly: mask_latents = torch.zeros_like(latents)[:, :1].to(device, dtype) else: mask_latents = torch.zeros_like(latents).to(device, dtype) masked_video_latents = torch.zeros_like(latents).to(device, dtype) mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents masked_video_latents_input = ( torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents ) inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype) else: # Prepare mask latent variables video_length = video.shape[2] mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width) mask_condition = mask_condition.to(dtype=torch.float32) mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length) if num_channels_transformer != num_channels_latents: mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1]) if masked_video_latents is None: masked_video = init_video * (mask_condition_tile < 0.5) + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1 else: masked_video = masked_video_latents if self.transformer.resize_inpaint_mask_directly: _, masked_video_latents = self.prepare_mask_latents( None, masked_video, batch_size, height, width, dtype, device, generator, self.do_classifier_free_guidance, noise_aug_strength=noise_aug_strength, ) mask_latents = resize_mask(1 - mask_condition, masked_video_latents, self.vae.cache_mag_vae) mask_latents = mask_latents.to(device, dtype) * self.vae.config.scaling_factor else: mask_latents, masked_video_latents = self.prepare_mask_latents( mask_condition_tile, masked_video, batch_size, height, width, dtype, device, generator, self.do_classifier_free_guidance, noise_aug_strength=noise_aug_strength, ) mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents masked_video_latents_input = ( torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents ) inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype) else: inpaint_latents = None mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1]) mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(device, dtype) else: if num_channels_transformer != num_channels_latents: mask = torch.zeros_like(latents).to(device, dtype) if self.transformer.resize_inpaint_mask_directly: mask_latents = torch.zeros_like(latents)[:, :1].to(device, dtype) else: mask_latents = torch.zeros_like(latents).to(device, dtype) masked_video_latents = torch.zeros_like(latents).to(device, dtype) mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents masked_video_latents_input = ( torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents ) inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype) else: mask = torch.zeros_like(init_video[:, :1]) mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1]) mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(device, dtype) inpaint_latents = None if comfyui_progressbar: pbar.update(1) # Check that sizes of mask, masked image and latents match if num_channels_transformer != num_channels_latents: num_channels_mask = mask_latents.shape[1] num_channels_masked_image = masked_video_latents.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.transformer.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects" f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.transformer` or your `mask_image` or `image` input." ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9 create image_rotary_emb, style embedding & time ids grid_height = height // 8 // self.transformer.config.patch_size grid_width = width // 8 // self.transformer.config.patch_size if self.transformer.config.get("time_position_encoding_type", "2d_rope") == "3d_rope": base_size_width = 720 // 8 // self.transformer.config.patch_size base_size_height = 480 // 8 // self.transformer.config.patch_size grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size_width, base_size_height ) image_rotary_emb = get_3d_rotary_pos_embed( self.transformer.config.attention_head_dim, grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=latents.size(2), use_real=True, ) else: base_size = 512 // 8 // self.transformer.config.patch_size grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size, base_size ) image_rotary_emb = get_2d_rotary_pos_embed( self.transformer.config.attention_head_dim, grid_crops_coords, (grid_height, grid_width) ) # Get other hunyuan params target_size = target_size or (height, width) add_time_ids = list(original_size + target_size + crops_coords_top_left) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) style = torch.tensor([0], device=device) if self.do_classifier_free_guidance: add_time_ids = torch.cat([add_time_ids] * 2, dim=0) style = torch.cat([style] * 2, dim=0) # To latents.device add_time_ids = add_time_ids.to(dtype=dtype, device=device).repeat( batch_size * num_images_per_prompt, 1 ) style = style.to(device=device).repeat(batch_size * num_images_per_prompt) # Get other pixart params added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if self.transformer.config.get("sample_size", 64) == 128: resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) resolution = resolution.to(dtype=dtype, device=device) aspect_ratio = aspect_ratio.to(dtype=dtype, device=device) if self.do_classifier_free_guidance: resolution = torch.cat([resolution, resolution], dim=0) aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) if prompt_embeds_2 is not None: prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) # To latents.device prompt_embeds = prompt_embeds.to(device=device) prompt_attention_mask = prompt_attention_mask.to(device=device) if prompt_embeds_2 is not None: prompt_embeds_2 = prompt_embeds_2.to(device=device) prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) # 10. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents if hasattr(self.scheduler, "scale_model_input"): latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) if i < len(timesteps) * (1 - clip_apply_ratio) and clip_encoder_hidden_states_input is not None: clip_encoder_hidden_states_actual_input = torch.zeros_like(clip_encoder_hidden_states_input) clip_attention_mask_actual_input = torch.zeros_like(clip_attention_mask_input) else: clip_encoder_hidden_states_actual_input = clip_encoder_hidden_states_input clip_attention_mask_actual_input = clip_attention_mask_input # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to( dtype=latent_model_input.dtype ) # predict the noise residual noise_pred = self.transformer( latent_model_input, t_expand, encoder_hidden_states=prompt_embeds, text_embedding_mask=prompt_attention_mask, encoder_hidden_states_t5=prompt_embeds_2, text_embedding_mask_t5=prompt_attention_mask_2, image_meta_size=add_time_ids, style=style, image_rotary_emb=image_rotary_emb, inpaint_latents=inpaint_latents, clip_encoder_hidden_states=clip_encoder_hidden_states_actual_input, clip_attention_mask=clip_attention_mask_actual_input, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] if noise_pred.size()[1] != self.vae.config.latent_channels: noise_pred, _ = noise_pred.chunk(2, dim=1) # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if self.do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if num_channels_transformer == num_channels_latents: init_latents_proper = image_latents init_mask = mask if i < len(timesteps) - 1: noise_timestep = timesteps[i + 1] if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): init_latents_proper = self.scheduler.scale_noise( init_latents_proper, torch.tensor([noise_timestep], noise) ) else: init_latents_proper = self.scheduler.add_noise( init_latents_proper, noise, torch.tensor([noise_timestep]) ) latents = (1 - init_mask) * init_latents_proper + init_mask * latents if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2) negative_prompt_embeds_2 = callback_outputs.pop( "negative_prompt_embeds_2", negative_prompt_embeds_2 ) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if comfyui_progressbar: pbar.update(1) # Post-processing video = self.decode_latents(latents) # Convert to tensor if output_type == "latent": video = torch.from_numpy(video) # Offload all models self.maybe_free_model_hooks() if not return_dict: return video return EasyAnimatePipelineOutput(frames=video)