Spaces:
Sleeping
Sleeping
# Copyright 2024 EasyAnimate Authors and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from dataclasses import dataclass | |
from typing import Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from diffusers import DiffusionPipeline | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models import AutoencoderKL, HunyuanDiT2DModel | |
from diffusers.models.embeddings import (get_2d_rotary_pos_embed, | |
get_3d_rotary_pos_embed) | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import \ | |
StableDiffusionSafetyChecker | |
from diffusers.schedulers import DDIMScheduler, FlowMatchEulerDiscreteScheduler | |
from diffusers.utils import (BACKENDS_MAPPING, BaseOutput, deprecate, | |
is_bs4_available, is_ftfy_available, | |
is_torch_xla_available, logging, | |
replace_example_docstring) | |
from diffusers.utils.torch_utils import randn_tensor | |
from einops import rearrange | |
from PIL import Image | |
from tqdm import tqdm | |
from transformers import (BertModel, BertTokenizer, CLIPImageProcessor, | |
Qwen2Tokenizer, Qwen2VLForConditionalGeneration, | |
T5EncoderModel, T5Tokenizer) | |
from ..models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel | |
from .pipeline_easyanimate_inpaint import EasyAnimatePipelineOutput | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```python | |
>>> import torch | |
>>> from diffusers import EasyAnimatePipeline | |
>>> from diffusers.utils import export_to_video | |
>>> # Models: "alibaba-pai/EasyAnimateV5.1-12b-zh" or "alibaba-pai/EasyAnimateV5.1-7b-zh" | |
>>> pipe = EasyAnimatePipeline.from_pretrained("alibaba-pai/EasyAnimateV5.1-7b-zh", torch_dtype=torch.float16).to("cuda") | |
>>> prompt = ( | |
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. " | |
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other " | |
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, " | |
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. " | |
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical " | |
... "atmosphere of this unique musical performance." | |
... ) | |
>>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).sample[0] | |
>>> export_to_video(video, "output.mp4", fps=8) | |
``` | |
""" | |
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid | |
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
tw = tgt_width | |
th = tgt_height | |
h, w = src | |
r = h / w | |
if r > (th / tw): | |
resize_height = th | |
resize_width = int(round(th / h * w)) | |
else: | |
resize_width = tw | |
resize_height = int(round(tw / w * h)) | |
crop_top = int(round((th - resize_height) / 2.0)) | |
crop_left = int(round((tw - resize_width) / 2.0)) | |
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class EasyAnimatePipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-video generation using EasyAnimate. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1. | |
EasyAnimate uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by | |
HunyuanDiT team) in V5. | |
Args: | |
vae ([`AutoencoderKLMagvit`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations. | |
text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]): | |
EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1. | |
EasyAnimate uses [bilingual CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers) in V5. | |
tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]): | |
A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text. | |
transformer ([`EasyAnimateTransformer3DModel`]): | |
The EasyAnimate model designed by EasyAnimate Team. | |
text_encoder_2 (`T5EncoderModel`): | |
EasyAnimate does not use text_encoder_2 in V5.1. | |
EasyAnimate uses [mT5](https://huggingface.co/google/mt5-base) embedder in V5. | |
tokenizer_2 (`T5Tokenizer`): | |
The tokenizer for the mT5 embedder. | |
scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents. | |
""" | |
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
_optional_components = [ | |
"text_encoder_2", | |
"tokenizer_2", | |
"text_encoder", | |
"tokenizer", | |
] | |
_callback_tensor_inputs = [ | |
"latents", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
"prompt_embeds_2", | |
"negative_prompt_embeds_2", | |
] | |
def __init__( | |
self, | |
vae: AutoencoderKLMagvit, | |
text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel], | |
tokenizer: Union[Qwen2Tokenizer, BertTokenizer], | |
text_encoder_2: Optional[Union[T5EncoderModel, Qwen2VLForConditionalGeneration]], | |
tokenizer_2: Optional[Union[T5Tokenizer, Qwen2Tokenizer]], | |
transformer: EasyAnimateTransformer3DModel, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
transformer=transformer, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def enable_sequential_cpu_offload(self, *args, **kwargs): | |
super().enable_sequential_cpu_offload(*args, **kwargs) | |
if hasattr(self.transformer, "clip_projection") and self.transformer.clip_projection is not None: | |
import accelerate | |
accelerate.hooks.remove_hook_from_module(self.transformer.clip_projection, recurse=True) | |
self.transformer.clip_projection = self.transformer.clip_projection.to("cuda") | |
def encode_prompt( | |
self, | |
prompt: str, | |
device: torch.device, | |
dtype: torch.dtype, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: Optional[str] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_attention_mask: Optional[torch.Tensor] = None, | |
negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
max_sequence_length: Optional[int] = None, | |
text_encoder_index: int = 0, | |
actual_max_sequence_length: int = 256 | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
dtype (`torch.dtype`): | |
torch dtype | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
prompt_attention_mask (`torch.Tensor`, *optional*): | |
Attention mask for the prompt. Required when `prompt_embeds` is passed directly. | |
negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. | |
max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. | |
text_encoder_index (`int`, *optional*): | |
Index of the text encoder to use. `0` for clip and `1` for T5. | |
""" | |
tokenizers = [self.tokenizer, self.tokenizer_2] | |
text_encoders = [self.text_encoder, self.text_encoder_2] | |
tokenizer = tokenizers[text_encoder_index] | |
text_encoder = text_encoders[text_encoder_index] | |
if max_sequence_length is None: | |
if text_encoder_index == 0: | |
max_length = min(self.tokenizer.model_max_length, actual_max_sequence_length) | |
if text_encoder_index == 1: | |
max_length = min(self.tokenizer_2.model_max_length, actual_max_sequence_length) | |
else: | |
max_length = max_sequence_length | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
if type(tokenizer) in [BertTokenizer, T5Tokenizer]: | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
if text_input_ids.shape[-1] > actual_max_sequence_length: | |
reprompt = tokenizer.batch_decode(text_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True) | |
text_inputs = tokenizer( | |
reprompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
_actual_max_sequence_length = min(tokenizer.model_max_length, actual_max_sequence_length) | |
removed_text = tokenizer.batch_decode(untruncated_ids[:, _actual_max_sequence_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {_actual_max_sequence_length} tokens: {removed_text}" | |
) | |
prompt_attention_mask = text_inputs.attention_mask.to(device) | |
if self.transformer.config.enable_text_attention_mask: | |
prompt_embeds = text_encoder( | |
text_input_ids.to(device), | |
attention_mask=prompt_attention_mask, | |
) | |
else: | |
prompt_embeds = text_encoder( | |
text_input_ids.to(device) | |
) | |
prompt_embeds = prompt_embeds[0] | |
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
else: | |
if prompt is not None and isinstance(prompt, str): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "text", "text": prompt}], | |
} | |
] | |
else: | |
messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "text", "text": _prompt}], | |
} for _prompt in prompt | |
] | |
text = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
text_inputs = tokenizer( | |
text=[text], | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
padding_side="right", | |
return_tensors="pt", | |
) | |
text_inputs = text_inputs.to(text_encoder.device) | |
text_input_ids = text_inputs.input_ids | |
prompt_attention_mask = text_inputs.attention_mask | |
if self.transformer.config.enable_text_attention_mask: | |
# Inference: Generation of the output | |
prompt_embeds = text_encoder( | |
input_ids=text_input_ids, | |
attention_mask=prompt_attention_mask, | |
output_hidden_states=True).hidden_states[-2] | |
else: | |
raise ValueError("LLM needs attention_mask") | |
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_attention_mask = prompt_attention_mask.to(device=device) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
if type(tokenizer) in [BertTokenizer, T5Tokenizer]: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = prompt_embeds.shape[1] | |
uncond_input = tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_input_ids = uncond_input.input_ids | |
if uncond_input_ids.shape[-1] > actual_max_sequence_length: | |
reuncond_tokens = tokenizer.batch_decode(uncond_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True) | |
uncond_input = tokenizer( | |
reuncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors="pt", | |
) | |
uncond_input_ids = uncond_input.input_ids | |
negative_prompt_attention_mask = uncond_input.attention_mask.to(device) | |
if self.transformer.config.enable_text_attention_mask: | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=negative_prompt_attention_mask, | |
) | |
else: | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device) | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
else: | |
if negative_prompt is not None and isinstance(negative_prompt, str): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "text", "text": negative_prompt}], | |
} | |
] | |
else: | |
messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "text", "text": _negative_prompt}], | |
} for _negative_prompt in negative_prompt | |
] | |
text = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
text_inputs = tokenizer( | |
text=[text], | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
padding_side="right", | |
return_tensors="pt", | |
) | |
text_inputs = text_inputs.to(text_encoder.device) | |
text_input_ids = text_inputs.input_ids | |
negative_prompt_attention_mask = text_inputs.attention_mask | |
if self.transformer.config.enable_text_attention_mask: | |
# Inference: Generation of the output | |
negative_prompt_embeds = text_encoder( | |
input_ids=text_input_ids, | |
attention_mask=negative_prompt_attention_mask, | |
output_hidden_states=True).hidden_states[-2] | |
else: | |
raise ValueError("LLM needs attention_mask") | |
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device=device) | |
return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
prompt_attention_mask=None, | |
negative_prompt_attention_mask=None, | |
prompt_embeds_2=None, | |
negative_prompt_embeds_2=None, | |
prompt_attention_mask_2=None, | |
negative_prompt_attention_mask_2=None, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if height % 16 != 0 or width % 16 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is None and prompt_embeds_2 is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if prompt_embeds is not None and prompt_attention_mask is None: | |
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: | |
raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: | |
raise ValueError( | |
"Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: | |
if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: | |
raise ValueError( | |
"`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`" | |
f" {negative_prompt_embeds_2.shape}." | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): | |
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
if self.vae.cache_mag_vae: | |
mini_batch_encoder = self.vae.mini_batch_encoder | |
mini_batch_decoder = self.vae.mini_batch_decoder | |
shape = (batch_size, num_channels_latents, int((video_length - 1) // mini_batch_encoder * mini_batch_decoder + 1) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
else: | |
mini_batch_encoder = self.vae.mini_batch_encoder | |
mini_batch_decoder = self.vae.mini_batch_decoder | |
shape = (batch_size, num_channels_latents, int(video_length // mini_batch_encoder * mini_batch_decoder) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
else: | |
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
if hasattr(self.scheduler, "init_noise_sigma"): | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def smooth_output(self, video, mini_batch_encoder, mini_batch_decoder): | |
if video.size()[2] <= mini_batch_encoder: | |
return video | |
prefix_index_before = mini_batch_encoder // 2 | |
prefix_index_after = mini_batch_encoder - prefix_index_before | |
pixel_values = video[:, :, prefix_index_before:-prefix_index_after] | |
# Encode middle videos | |
latents = self.vae.encode(pixel_values)[0] | |
latents = latents.mode() | |
# Decode middle videos | |
middle_video = self.vae.decode(latents)[0] | |
video[:, :, prefix_index_before:-prefix_index_after] = (video[:, :, prefix_index_before:-prefix_index_after] + middle_video) / 2 | |
return video | |
def decode_latents(self, latents): | |
video_length = latents.shape[2] | |
latents = 1 / self.vae.config.scaling_factor * latents | |
if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
mini_batch_encoder = self.vae.mini_batch_encoder | |
mini_batch_decoder = self.vae.mini_batch_decoder | |
video = self.vae.decode(latents)[0] | |
video = video.clamp(-1, 1) | |
if not self.vae.cache_compression_vae and not self.vae.cache_mag_vae: | |
video = self.smooth_output(video, mini_batch_encoder, mini_batch_decoder).cpu().clamp(-1, 1) | |
else: | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
video = [] | |
for frame_idx in tqdm(range(latents.shape[0])): | |
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample) | |
video = torch.cat(video) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def guidance_scale(self): | |
return self._guidance_scale | |
def guidance_rescale(self): | |
return self._guidance_rescale | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def num_timesteps(self): | |
return self._num_timesteps | |
def interrupt(self): | |
return self._interrupt | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
video_length: Optional[int] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: Optional[float] = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_embeds_2: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds_2: Optional[torch.Tensor] = None, | |
prompt_attention_mask: Optional[torch.Tensor] = None, | |
prompt_attention_mask_2: Optional[torch.Tensor] = None, | |
negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
negative_prompt_attention_mask_2: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "latent", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = (1024, 1024), | |
target_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
comfyui_progressbar: bool = False, | |
timesteps: Optional[List[int]] = None, | |
): | |
r""" | |
Generates images or video using the EasyAnimate pipeline based on the provided prompts. | |
Examples: | |
prompt (`str` or `List[str]`, *optional*): | |
Text prompts to guide the image or video generation. If not provided, use `prompt_embeds` instead. | |
video_length (`int`, *optional*): | |
Length of the generated video (in frames). | |
height (`int`, *optional*): | |
Height of the generated image in pixels. | |
width (`int`, *optional*): | |
Width of the generated image in pixels. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
Number of denoising steps during generation. More steps generally yield higher quality images but slow down inference. | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
Encourages the model to align outputs with prompts. A higher value may decrease image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
Prompts indicating what to exclude in generation. If not specified, use `negative_prompt_embeds`. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
Number of images to generate for each prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Applies to DDIM scheduling. Controlled by the eta parameter from the related literature. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A generator to ensure reproducibility in image generation. | |
latents (`torch.Tensor`, *optional*): | |
Predefined latent tensors to condition generation. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Text embeddings for the prompts. Overrides prompt string inputs for more flexibility. | |
prompt_embeds_2 (`torch.Tensor`, *optional*): | |
Secondary text embeddings to supplement or replace the initial prompt embeddings. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Embeddings for negative prompts. Overrides string inputs if defined. | |
negative_prompt_embeds_2 (`torch.Tensor`, *optional*): | |
Secondary embeddings for negative prompts, similar to `negative_prompt_embeds`. | |
prompt_attention_mask (`torch.Tensor`, *optional*): | |
Attention mask for the primary prompt embeddings. | |
prompt_attention_mask_2 (`torch.Tensor`, *optional*): | |
Attention mask for the secondary prompt embeddings. | |
negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
Attention mask for negative prompt embeddings. | |
negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): | |
Attention mask for secondary negative prompt embeddings. | |
output_type (`str`, *optional*, defaults to "latent"): | |
Format of the generated output, either as a PIL image or as a NumPy array. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
If `True`, returns a structured output. Otherwise returns a simple tuple. | |
callback_on_step_end (`Callable`, *optional*): | |
Functions called at the end of each denoising step. | |
callback_on_step_end_tensor_inputs (`List[str]`, *optional*): | |
Tensor names to be included in callback function calls. | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
Adjusts noise levels based on guidance scale. | |
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): | |
Original dimensions of the output. | |
target_size (`Tuple[int, int]`, *optional*): | |
Desired output dimensions for calculations. | |
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): | |
Coordinates for cropping. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# 0. default height and width | |
height = int((height // 16) * 16) | |
width = int((width // 16) * 16) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_attention_mask, | |
prompt_embeds_2, | |
negative_prompt_embeds_2, | |
prompt_attention_mask_2, | |
negative_prompt_attention_mask_2, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
if self.text_encoder is not None: | |
dtype = self.text_encoder.dtype | |
elif self.text_encoder_2 is not None: | |
dtype = self.text_encoder_2.dtype | |
else: | |
dtype = self.transformer.dtype | |
# 3. Encode input prompt | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_attention_mask, | |
) = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
dtype=dtype, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
negative_prompt_attention_mask=negative_prompt_attention_mask, | |
text_encoder_index=0, | |
) | |
if self.tokenizer_2 is not None: | |
( | |
prompt_embeds_2, | |
negative_prompt_embeds_2, | |
prompt_attention_mask_2, | |
negative_prompt_attention_mask_2, | |
) = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
dtype=dtype, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds_2, | |
negative_prompt_embeds=negative_prompt_embeds_2, | |
prompt_attention_mask=prompt_attention_mask_2, | |
negative_prompt_attention_mask=negative_prompt_attention_mask_2, | |
text_encoder_index=1, | |
) | |
else: | |
prompt_embeds_2 = None | |
negative_prompt_embeds_2 = None | |
prompt_attention_mask_2 = None | |
negative_prompt_attention_mask_2 = None | |
# 4. Prepare timesteps | |
if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, mu=1) | |
else: | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
if comfyui_progressbar: | |
from comfy.utils import ProgressBar | |
pbar = ProgressBar(num_inference_steps + 1) | |
# 5. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
video_length, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents, | |
) | |
if comfyui_progressbar: | |
pbar.update(1) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7 create image_rotary_emb, style embedding & time ids | |
grid_height = height // 8 // self.transformer.config.patch_size | |
grid_width = width // 8 // self.transformer.config.patch_size | |
if self.transformer.config.get("time_position_encoding_type", "2d_rope") == "3d_rope": | |
base_size_width = 720 // 8 // self.transformer.config.patch_size | |
base_size_height = 480 // 8 // self.transformer.config.patch_size | |
grid_crops_coords = get_resize_crop_region_for_grid( | |
(grid_height, grid_width), base_size_width, base_size_height | |
) | |
image_rotary_emb = get_3d_rotary_pos_embed( | |
self.transformer.config.attention_head_dim, grid_crops_coords, grid_size=(grid_height, grid_width), | |
temporal_size=latents.size(2), use_real=True, | |
) | |
else: | |
base_size = 512 // 8 // self.transformer.config.patch_size | |
grid_crops_coords = get_resize_crop_region_for_grid( | |
(grid_height, grid_width), base_size, base_size | |
) | |
image_rotary_emb = get_2d_rotary_pos_embed( | |
self.transformer.config.attention_head_dim, grid_crops_coords, (grid_height, grid_width) | |
) | |
# Get other hunyuan params | |
target_size = target_size or (height, width) | |
add_time_ids = list(original_size + target_size + crops_coords_top_left) | |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
style = torch.tensor([0], device=device) | |
if self.do_classifier_free_guidance: | |
add_time_ids = torch.cat([add_time_ids] * 2, dim=0) | |
style = torch.cat([style] * 2, dim=0) | |
# To latents.device | |
add_time_ids = add_time_ids.to(dtype=dtype, device=device).repeat( | |
batch_size * num_images_per_prompt, 1 | |
) | |
style = style.to(device=device).repeat(batch_size * num_images_per_prompt) | |
# Get other pixart params | |
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
if self.transformer.config.get("sample_size", 64) == 128: | |
resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) | |
aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) | |
resolution = resolution.to(dtype=dtype, device=device) | |
aspect_ratio = aspect_ratio.to(dtype=dtype, device=device) | |
if self.do_classifier_free_guidance: | |
resolution = torch.cat([resolution, resolution], dim=0) | |
aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) | |
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) | |
if prompt_embeds_2 is not None: | |
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) | |
prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) | |
# To latents.device | |
prompt_embeds = prompt_embeds.to(device=device) | |
prompt_attention_mask = prompt_attention_mask.to(device=device) | |
if prompt_embeds_2 is not None: | |
prompt_embeds_2 = prompt_embeds_2.to(device=device) | |
prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
if hasattr(self.scheduler, "scale_model_input"): | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# expand scalar t to 1-D tensor to match the 1st dim of latent_model_input | |
t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to( | |
dtype=latent_model_input.dtype | |
) | |
# predict the noise residual | |
noise_pred = self.transformer( | |
latent_model_input, | |
t_expand, | |
encoder_hidden_states=prompt_embeds, | |
text_embedding_mask=prompt_attention_mask, | |
encoder_hidden_states_t5=prompt_embeds_2, | |
text_embedding_mask_t5=prompt_attention_mask_2, | |
image_meta_size=add_time_ids, | |
style=style, | |
image_rotary_emb=image_rotary_emb, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
if noise_pred.size()[1] != self.vae.config.latent_channels: | |
noise_pred, _ = noise_pred.chunk(2, dim=1) | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if self.do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2) | |
negative_prompt_embeds_2 = callback_outputs.pop( | |
"negative_prompt_embeds_2", negative_prompt_embeds_2 | |
) | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if comfyui_progressbar: | |
pbar.update(1) | |
# Post-processing | |
video = self.decode_latents(latents) | |
# Convert to tensor | |
if output_type == "latent": | |
video = torch.from_numpy(video) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return video | |
return EasyAnimatePipelineOutput(frames=video) |