Spaces:
Sleeping
Sleeping
import gc | |
import os | |
import cv2 | |
import imageio | |
import numpy as np | |
import torch | |
import torchvision | |
from einops import rearrange | |
from PIL import Image | |
def get_width_and_height_from_image_and_base_resolution(image, base_resolution): | |
target_pixels = int(base_resolution) * int(base_resolution) | |
original_width, original_height = Image.open(image).size | |
ratio = (target_pixels / (original_width * original_height)) ** 0.5 | |
width_slider = round(original_width * ratio) | |
height_slider = round(original_height * ratio) | |
return height_slider, width_slider | |
def color_transfer(sc, dc): | |
""" | |
Transfer color distribution from of sc, referred to dc. | |
Args: | |
sc (numpy.ndarray): input image to be transfered. | |
dc (numpy.ndarray): reference image | |
Returns: | |
numpy.ndarray: Transferred color distribution on the sc. | |
""" | |
def get_mean_and_std(img): | |
x_mean, x_std = cv2.meanStdDev(img) | |
x_mean = np.hstack(np.around(x_mean, 2)) | |
x_std = np.hstack(np.around(x_std, 2)) | |
return x_mean, x_std | |
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB) | |
s_mean, s_std = get_mean_and_std(sc) | |
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB) | |
t_mean, t_std = get_mean_and_std(dc) | |
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean | |
np.putmask(img_n, img_n > 255, 255) | |
np.putmask(img_n, img_n < 0, 0) | |
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB) | |
return dst | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
outputs.append(Image.fromarray(x)) | |
if color_transfer_post_process: | |
for i in range(1, len(outputs)): | |
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0]))) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
if imageio_backend: | |
if path.endswith("mp4"): | |
imageio.mimsave(path, outputs, fps=fps) | |
else: | |
imageio.mimsave(path, outputs, duration=(1000 * 1/fps)) | |
else: | |
if path.endswith("mp4"): | |
path = path.replace('.mp4', '.gif') | |
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0) | |
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size): | |
if validation_image_start is not None and validation_image_end is not None: | |
if type(validation_image_start) is str and os.path.isfile(validation_image_start): | |
image_start = clip_image = Image.open(validation_image_start).convert("RGB") | |
image_start = image_start.resize([sample_size[1], sample_size[0]]) | |
clip_image = clip_image.resize([sample_size[1], sample_size[0]]) | |
else: | |
image_start = clip_image = validation_image_start | |
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] | |
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] | |
if type(validation_image_end) is str and os.path.isfile(validation_image_end): | |
image_end = Image.open(validation_image_end).convert("RGB") | |
image_end = image_end.resize([sample_size[1], sample_size[0]]) | |
else: | |
image_end = validation_image_end | |
image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end] | |
if type(image_start) is list: | |
clip_image = clip_image[0] | |
start_video = torch.cat( | |
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], | |
dim=2 | |
) | |
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) | |
input_video[:, :, :len(image_start)] = start_video | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, len(image_start):] = 255 | |
else: | |
input_video = torch.tile( | |
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), | |
[1, 1, video_length, 1, 1] | |
) | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, 1:] = 255 | |
if type(image_end) is list: | |
image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end] | |
end_video = torch.cat( | |
[torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end], | |
dim=2 | |
) | |
input_video[:, :, -len(end_video):] = end_video | |
input_video_mask[:, :, -len(image_end):] = 0 | |
else: | |
image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) | |
input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) | |
input_video_mask[:, :, -1:] = 0 | |
input_video = input_video / 255 | |
elif validation_image_start is not None: | |
if type(validation_image_start) is str and os.path.isfile(validation_image_start): | |
image_start = clip_image = Image.open(validation_image_start).convert("RGB") | |
image_start = image_start.resize([sample_size[1], sample_size[0]]) | |
clip_image = clip_image.resize([sample_size[1], sample_size[0]]) | |
else: | |
image_start = clip_image = validation_image_start | |
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] | |
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] | |
image_end = None | |
if type(image_start) is list: | |
clip_image = clip_image[0] | |
start_video = torch.cat( | |
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], | |
dim=2 | |
) | |
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) | |
input_video[:, :, :len(image_start)] = start_video | |
input_video = input_video / 255 | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, len(image_start):] = 255 | |
else: | |
input_video = torch.tile( | |
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), | |
[1, 1, video_length, 1, 1] | |
) / 255 | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, 1:, ] = 255 | |
else: | |
image_start = None | |
image_end = None | |
input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]]) | |
input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255 | |
clip_image = None | |
del image_start | |
del image_end | |
gc.collect() | |
return input_video, input_video_mask, clip_image | |
def get_video_to_video_latent(input_video_path, video_length, sample_size, fps=None, validation_video_mask=None, ref_image=None): | |
if input_video_path is not None: | |
if isinstance(input_video_path, str): | |
cap = cv2.VideoCapture(input_video_path) | |
input_video = [] | |
original_fps = cap.get(cv2.CAP_PROP_FPS) | |
frame_skip = 1 if fps is None else int(original_fps // fps) | |
frame_count = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
if frame_count % frame_skip == 0: | |
frame = cv2.resize(frame, (sample_size[1], sample_size[0])) | |
input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
frame_count += 1 | |
cap.release() | |
else: | |
input_video = input_video_path | |
input_video = torch.from_numpy(np.array(input_video))[:video_length] | |
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
if validation_video_mask is not None: | |
validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0])) | |
input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255) | |
input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0) | |
input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1]) | |
input_video_mask = input_video_mask.to(input_video.device, input_video.dtype) | |
else: | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, :] = 255 | |
else: | |
input_video, input_video_mask = None, None | |
if ref_image is not None: | |
if isinstance(ref_image, str): | |
ref_image = Image.open(ref_image).convert("RGB") | |
ref_image = ref_image.resize((sample_size[1], sample_size[0])) | |
ref_image = torch.from_numpy(np.array(ref_image)) | |
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
else: | |
ref_image = torch.from_numpy(np.array(ref_image)) | |
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
return input_video, input_video_mask, ref_image | |
def get_image_latent(ref_image=None, sample_size=None): | |
if ref_image is not None: | |
if isinstance(ref_image, str): | |
ref_image = Image.open(ref_image).convert("RGB") | |
ref_image = ref_image.resize((sample_size[1], sample_size[0])) | |
ref_image = torch.from_numpy(np.array(ref_image)) | |
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
else: | |
ref_image = torch.from_numpy(np.array(ref_image)) | |
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
return ref_image |