File size: 6,200 Bytes
6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 45bdc95 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 6b7f843 90b2862 97cb6a7 90b2862 6b7f843 45bdc95 6b7f843 45bdc95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
import torch
from matplotlib import pyplot as plt
import numpy as np
from groundingdino.util.inference import load_model, load_image, predict
from segment_anything import SamPredictor, sam_model_registry
from torchvision.ops import box_convert
model_type = "vit_b"
sam_checkpoint = "weights/sam_vit_b.pth"
config = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
dino_checkpoint = "weights/groundingdino_swint_ogc.pth"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
predictor = SamPredictor(sam)
device = "cpu"
model = load_model(config, dino_checkpoint, device)
box_threshold = 0.35
text_threshold = 0.25
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label=None):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='red', facecolor=(0, 0, 0, 0), lw=2))
if label is not None:
ax.text(x0, y0, label, fontsize=12, color='white', backgroundcolor='red', ha='left', va='top')
def extract_object_with_transparent_background(image, masks):
mask_expanded = np.expand_dims(masks[0], axis=-1)
mask_expanded = np.repeat(mask_expanded, 3, axis=-1)
segment = image * mask_expanded
rgba_segment = np.zeros((segment.shape[0], segment.shape[1], 4), dtype=np.uint8)
rgba_segment[:, :, :3] = segment
rgba_segment[:, :, 3] = masks[0] * 255
return rgba_segment
def extract_remaining_image(image, masks):
inverse_mask = np.logical_not(masks[0])
inverse_mask_expanded = np.expand_dims(inverse_mask, axis=-1)
inverse_mask_expanded = np.repeat(inverse_mask_expanded, 3, axis=-1)
remaining_image = image * inverse_mask_expanded
return remaining_image
def overlay_masks_boxes_on_image(image, masks, boxes, labels, show_masks, show_boxes):
fig, ax = plt.subplots()
ax.imshow(image)
if show_masks:
for mask in masks:
show_mask(mask, ax, random_color=False)
if show_boxes:
for input_box, label in zip(boxes, labels):
show_box(input_box, ax, label)
ax.axis('off')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0)
plt.margins(0, 0)
fig.canvas.draw()
output_image = np.array(fig.canvas.buffer_rgba())
plt.close(fig)
return output_image
def detect_objects(image, prompt, show_masks=True, show_boxes=True, crop_options="No crop"):
image_source, image = load_image(image)
predictor.set_image(image_source)
boxes, logits, phrases = predict(
model=model,
image=image,
caption=prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=device
)
h, w, _ = image_source.shape
boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy") * torch.Tensor([w, h, w, h])
boxes = np.round(boxes.numpy()).astype(int)
labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]
masks_list = []
res_json = {"prompt": prompt, "objects": []}
output_image_paths = []
for i, (input_box, label) in enumerate(zip(boxes, labels)):
x1, y1, x2, y2 = input_box
width = x2 - x1
height = y2 - y1
avg_size = (width + height) / 2
d = avg_size * 0.1
center_point = np.array([(x1 + x2) / 2, (y1 + y2) / 2])
points = []
points.append([center_point[0], center_point[1] - d])
points.append([center_point[0], center_point[1] + d])
points.append([center_point[0] - d, center_point[1]])
points.append([center_point[0] + d, center_point[1]])
input_point = np.array(points)
input_label = np.array([1] * len(input_point))
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True,
)
mask_input = logits[np.argmax(scores), :, :]
masks, _, _ = predictor.predict(
point_coords=input_point,
point_labels=input_label,
mask_input=mask_input[None, :, :],
multimask_output=False
)
masks_list.append(masks)
composite_image = np.zeros_like(image_source)
rgba_segment = extract_object_with_transparent_background(image_source, masks)
composite_image = np.maximum(composite_image, rgba_segment[:, :, :3])
cropped_image = composite_image[y1:y2, x1:x2, :]
output_image = overlay_masks_boxes_on_image(cropped_image, [], [], [], False, False)
output_image_path = f'output_image_{i}.jpeg'
plt.imsave(output_image_path, output_image)
output_image_paths.append(output_image_path)
# save object information in json
res_json["objects"].append(
{"label": label, "score": np.max(scores).item(), "box": input_box.tolist(),
"center": center_point.tolist(),
"avg_size": avg_size})
return [res_json, output_image_paths]
app = gr.Interface(
detect_objects,
inputs=[gr.Image(type='filepath', label="Upload Image"),
gr.Textbox(
label="Object to Detect",
placeholder="Enter any text, comma separated if multiple objects needed",
show_label=True,
lines=1,
)],
outputs=[
gr.JSON(label="Output JSON"),
gr.Gallery(label="Result"),
],
examples=[
["images/tiger.jpeg", "animal from cat family"],
["images/car.jpeg", "a blue sports car"],
["images/bags.jpeg", "black bag next to the red bag"],
["images/deer.jpeg", "deer jumping and running across the road"],
["images/penn.jpeg", "sign board"]
],
title="Segment Anything",
description="Zero-Shot Object Detection, Segmentation and Cropping",
article="https://segment-anything.com",
)
app.launch()
|