Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,305 +1,227 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Menu options in both languages
|
35 |
-
MENU_AR = """
|
36 |
-
قائمة الخدمات المصرفية:
|
37 |
-
1. رصيد - استعلام عن رصيد حسابك
|
38 |
-
2. بطاقة - الإبلاغ عن بطاقة مفقودة
|
39 |
-
3. قرض - معلومات عن القروض
|
40 |
-
4. تحويل - تحويل الأموال
|
41 |
-
5. حساب - فتح حساب جديد
|
42 |
-
6. فائدة - أسعار الفائدة
|
43 |
-
7. فرع - مواقع الفروع
|
44 |
-
8. ساعات - ساعات العمل
|
45 |
-
9. اتصال - معلومات الاتصال
|
46 |
-
"""
|
47 |
-
|
48 |
-
MENU_EN = """
|
49 |
-
Banking Services Menu:
|
50 |
-
1. balance - Check your account balance
|
51 |
-
2. card - Report a lost card
|
52 |
-
3. loan - Information about loans
|
53 |
-
4. transfer - Transfer funds
|
54 |
-
5. account - Open a new account
|
55 |
-
6. interest - Interest rates
|
56 |
-
7. branch - Branch locations
|
57 |
-
8. hours - Working hours
|
58 |
-
9. contact - Contact information
|
59 |
-
"""
|
60 |
-
|
61 |
-
# Map intents to keywords (enhanced)
|
62 |
-
INTENT_KEYWORDS = {
|
63 |
-
"balance": ["balance", "check balance", "account balance", "how much", "رصيد", "حساب", "كم المبلغ", "1"],
|
64 |
-
"lost_card": ["lost", "card", "stolen", "missing", "فقدت", "بطاقة", "مسروقة", "ضائعة", "2"],
|
65 |
-
"loan": ["loan", "borrow", "borrowing", "credit", "قرض", "استدانة", "إئتمان", "3"],
|
66 |
-
"transfer": ["transfer", "send money", "payment", "تحويل", "ارسال", "دفع", "4"],
|
67 |
-
"new_account": ["account", "open", "create", "new", "حساب", "فتح", "جديد", "إنشاء", "5"],
|
68 |
-
"interest_rates": ["interest", "rate", "rates", "return", "فائدة", "نسبة", "عائد", "6"],
|
69 |
-
"branches": ["branch", "location", "where", "office", "فرع", "موقع", "أين", "مكتب", "7"],
|
70 |
-
"working_hours": ["hours", "time", "open", "close", "ساعات", "وقت", "مفتوح", "مغلق", "8"],
|
71 |
-
"contact": ["contact", "phone", "email", "call", "اتصال", "هاتف", "بريد", "اتصل", "9"]
|
72 |
-
}
|
73 |
-
|
74 |
-
def detect_language(text):
|
75 |
-
# Use Hugging Face language detection model
|
76 |
-
result = language_detector(text)
|
77 |
-
language = result[0]['label']
|
78 |
-
return language
|
79 |
-
|
80 |
-
def classify_intent(message: str):
|
81 |
-
# Check for menu request
|
82 |
-
menu_keywords = ["menu", "options", "help", "قائمة", "خيارات", "مساعدة"]
|
83 |
-
message_lower = message.lower()
|
84 |
-
|
85 |
-
for keyword in menu_keywords:
|
86 |
-
if keyword in message_lower:
|
87 |
-
return "menu"
|
88 |
-
|
89 |
-
# Use keyword matching for intent classification
|
90 |
-
for intent_key, keywords in INTENT_KEYWORDS.items():
|
91 |
-
for keyword in keywords:
|
92 |
-
if keyword.lower() in message_lower:
|
93 |
-
return intent_key
|
94 |
-
|
95 |
-
return "unknown"
|
96 |
-
|
97 |
-
def respond(message: str):
|
98 |
-
if not message.strip():
|
99 |
-
return {
|
100 |
-
"ar": "الرجاء كتابة سؤالك.",
|
101 |
-
"en": "Please type your question."
|
102 |
}
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
}
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
.bot-message-ar {
|
163 |
-
background-color: #f0f0f0;
|
164 |
-
margin-left: auto;
|
165 |
-
text-align: right;
|
166 |
-
}
|
167 |
-
|
168 |
-
.header-section {
|
169 |
-
background-color: #1a5276;
|
170 |
-
color: white;
|
171 |
-
padding: 1rem;
|
172 |
-
border-radius: 10px;
|
173 |
-
margin-bottom: 1rem;
|
174 |
-
text-align: center;
|
175 |
-
}
|
176 |
-
|
177 |
-
.footer-section {
|
178 |
-
font-size: 0.8rem;
|
179 |
-
text-align: center;
|
180 |
-
margin-top: 2rem;
|
181 |
-
color: #666;
|
182 |
-
}
|
183 |
-
|
184 |
-
.lang-selector {
|
185 |
-
text-align: right;
|
186 |
-
margin-bottom: 1rem;
|
187 |
-
}
|
188 |
-
|
189 |
-
.menu-button {
|
190 |
-
margin-top: 0.5rem;
|
191 |
-
}
|
192 |
-
"""
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
state = gr.State(value=[])
|
198 |
-
# Store selected language
|
199 |
-
selected_lang = gr.State(value="ar")
|
200 |
-
|
201 |
-
with gr.Row(elem_classes="header-section"):
|
202 |
-
with gr.Column():
|
203 |
-
gr.Markdown("# Omdurman National Bank | بنك أم درمان الوطني")
|
204 |
-
gr.Markdown("### Virtual Banking Assistant | المساعد المصرفي الافتراضي")
|
205 |
-
|
206 |
-
with gr.Row():
|
207 |
-
with gr.Column(elem_classes="lang-selector"):
|
208 |
-
language_btn = gr.Radio(
|
209 |
-
["العربية", "English"],
|
210 |
-
value="العربية",
|
211 |
-
label="Language | اللغة"
|
212 |
-
)
|
213 |
-
|
214 |
-
with gr.Row():
|
215 |
-
chat_box = gr.Chatbot(elem_id="chatbox", height=400)
|
216 |
-
|
217 |
-
with gr.Row():
|
218 |
-
with gr.Column(scale=8):
|
219 |
-
text_input = gr.Textbox(
|
220 |
-
placeholder="Type your question here | اكتب سؤالك هنا",
|
221 |
-
label="",
|
222 |
-
elem_id="chat-input"
|
223 |
-
)
|
224 |
-
with gr.Column(scale=1):
|
225 |
-
submit_btn = gr.Button("Send | إرسال", variant="primary")
|
226 |
-
|
227 |
-
with gr.Row():
|
228 |
-
with gr.Column(elem_classes="menu-button"):
|
229 |
-
menu_btn = gr.Button("Show Menu | إظهار القائمة")
|
230 |
-
|
231 |
-
with gr.Row(elem_classes="footer-section"):
|
232 |
-
gr.Markdown("© 2025 Omdurman National Bank. All Rights Reserved. | جميع الحقوق محفوظة لبنك أم درمان الوطني ٢٠٢٥ ©")
|
233 |
-
|
234 |
-
# Update language state when language is changed
|
235 |
-
def update_language(lang):
|
236 |
-
if lang == "العربية":
|
237 |
-
return "ar"
|
238 |
-
else:
|
239 |
-
return "en"
|
240 |
-
|
241 |
-
language_btn.change(
|
242 |
-
fn=update_language,
|
243 |
-
inputs=language_btn,
|
244 |
-
outputs=selected_lang
|
245 |
-
)
|
246 |
-
|
247 |
-
# Handle message submission
|
248 |
-
def on_submit(message, chat_history, lang):
|
249 |
-
if not message.strip():
|
250 |
-
return "", chat_history
|
251 |
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
-
#
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
-
#
|
259 |
-
|
260 |
|
261 |
-
#
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
if __name__ == "__main__":
|
301 |
-
|
302 |
-
server_name="0.0.0.0",
|
303 |
-
server_port=7860,
|
304 |
-
share=True # Enable public link
|
305 |
-
)
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from langdetect import detect
|
7 |
+
from typing import List, Dict, Tuple, Any
|
8 |
+
from datetime import datetime
|
9 |
+
|
10 |
+
class MultilingualVectorChatbot:
|
11 |
+
def __init__(self,
|
12 |
+
embedding_model_name: str = 'paraphrase-multilingual-MiniLM-L12-v2',
|
13 |
+
similarity_threshold: float = 0.7):
|
14 |
+
"""
|
15 |
+
Initialize the multilingual chatbot with enhanced features
|
16 |
+
|
17 |
+
:param embedding_model_name: Multilingual sentence embedding model
|
18 |
+
:param similarity_threshold: Minimum similarity score for valid responses
|
19 |
+
"""
|
20 |
+
# Initialize models and databases
|
21 |
+
self.embedding_model = SentenceTransformer(embedding_model_name)
|
22 |
+
self.embedding_dimension = self.embedding_model.get_sentence_embedding_dimension()
|
23 |
+
self.index = faiss.IndexFlatL2(self.embedding_dimension)
|
24 |
+
self.knowledge_base = []
|
25 |
+
self.similarity_threshold = similarity_threshold
|
26 |
+
|
27 |
+
# Language-specific configurations
|
28 |
+
self.FALLBACK_RESPONSES = {
|
29 |
+
'ar': "عذرًا، لا أملك إجابة محددة لهذا السؤال. هل يمكنك إعادة الصياغة؟",
|
30 |
+
'en': "I'm sorry, I don't have a specific answer. Could you rephrase?",
|
31 |
+
'fr': "Désolé, je n'ai pas de réponse spécifique. Pouvez-vous reformuler?",
|
32 |
+
'es': "Lo siento, no tengo una respuesta específica. ¿Podrías reformular?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
+
|
35 |
+
# Conversation history
|
36 |
+
self.conversation_history = []
|
37 |
+
|
38 |
+
# Preload knowledge
|
39 |
+
self._preload_knowledge()
|
40 |
+
|
41 |
+
def _preload_knowledge(self):
|
42 |
+
"""Preload initial multilingual knowledge base"""
|
43 |
+
knowledge_pairs = [
|
44 |
+
# Arabic Knowledge
|
45 |
+
{
|
46 |
+
'questions': [
|
47 |
+
"ما هي عاصمة مصر؟",
|
48 |
+
"أين تقع القاهرة؟",
|
49 |
+
"ما أهمية القاهرة؟"
|
50 |
+
],
|
51 |
+
'answer': "القاهرة هي عاصمة جمهورية مصر العربية، وتقع على ضفاف نهر النيل. وهي أكبر مدن مصر وأهم مركز سياسي وثقافي واقتصادي في البلاد.",
|
52 |
+
'language': 'ar'
|
53 |
+
},
|
54 |
+
{
|
55 |
+
'questions': [
|
56 |
+
"كيف يمكنني تعلم البرمجة؟",
|
57 |
+
"ما هي أفضل طرق تعلم البرمجة؟"
|
58 |
+
],
|
59 |
+
'answer': "يمكنك تعلم البرمجة من خ��ال عدة طرق: دورات مجانية عبر الإنترنت مثل Coursera وfreeCodeCamp، منصات التعلم التفاعلية مثل Codecademy، ومشاريع عملية على GitHub. ابدأ بتعلم لغة برمجة أساسية مثل Python، وركز على الممارسة العملية.",
|
60 |
+
'language': 'ar'
|
61 |
+
},
|
62 |
+
# English Knowledge
|
63 |
+
{
|
64 |
+
'questions': [
|
65 |
+
"What is the capital of France?",
|
66 |
+
"Where is Paris located?",
|
67 |
+
"Tell me about Paris"
|
68 |
+
],
|
69 |
+
'answer': "Paris is the capital of France, located in the north-central part of the country on the Seine River. It's known for its art, fashion, gastronomy and culture, and is home to landmarks like the Eiffel Tower and Louvre Museum.",
|
70 |
+
'language': 'en'
|
71 |
+
},
|
72 |
+
{
|
73 |
+
'questions': [
|
74 |
+
"How can I learn programming?",
|
75 |
+
"What are the best ways to learn coding?"
|
76 |
+
],
|
77 |
+
'answer': "You can learn programming through various methods: free online courses like Coursera and freeCodeCamp, interactive learning platforms like Codecademy, and practical projects on GitHub. Start by learning a foundational programming language like Python, and focus on hands-on practice.",
|
78 |
+
'language': 'en'
|
79 |
+
}
|
80 |
+
]
|
81 |
+
|
82 |
+
# Batch add knowledge for better performance
|
83 |
+
all_questions = []
|
84 |
+
all_answers = []
|
85 |
+
all_languages = []
|
86 |
+
|
87 |
+
for knowledge in knowledge_pairs:
|
88 |
+
all_questions.extend(knowledge['questions'])
|
89 |
+
all_answers.extend([knowledge['answer']] * len(knowledge['questions']))
|
90 |
+
all_languages.extend([knowledge['language']] * len(knowledge['questions']))
|
91 |
+
|
92 |
+
self.add_knowledge_batch(all_questions, all_answers, all_languages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
def add_knowledge_batch(self, questions: List[str], answers: List[str], languages: List[str] = None):
|
95 |
+
"""
|
96 |
+
Add knowledge in batch for better performance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
:param questions: List of questions
|
99 |
+
:param answers: List of corresponding answers
|
100 |
+
:param languages: List of language codes
|
101 |
+
"""
|
102 |
+
if len(questions) != len(answers):
|
103 |
+
raise ValueError("Questions and answers must have the same length")
|
104 |
+
|
105 |
+
if languages and len(questions) != len(languages):
|
106 |
+
raise ValueError("Languages list must match questions length")
|
107 |
|
108 |
+
# Detect languages if not provided
|
109 |
+
if not languages:
|
110 |
+
languages = []
|
111 |
+
for q in questions:
|
112 |
+
try:
|
113 |
+
languages.append(detect(q))
|
114 |
+
except:
|
115 |
+
languages.append('en') # default to English
|
116 |
|
117 |
+
# Batch embed questions
|
118 |
+
question_embeddings = self.embedding_model.encode(questions)
|
119 |
|
120 |
+
# Add to FAISS index
|
121 |
+
if len(questions) > 0:
|
122 |
+
self.index.add(np.array(question_embeddings))
|
123 |
+
|
124 |
+
# Store in knowledge base
|
125 |
+
for q, a, lang in zip(questions, answers, languages):
|
126 |
+
self.knowledge_base.append({
|
127 |
+
'question': q,
|
128 |
+
'answer': a,
|
129 |
+
'language': lang
|
130 |
+
})
|
131 |
+
|
132 |
+
def find_similar_question(self, query: str, top_k: int = 3) -> List[Dict]:
|
133 |
+
"""
|
134 |
+
Enhanced similarity search with confidence scores
|
135 |
|
136 |
+
:param query: Input query
|
137 |
+
:param top_k: Number of results to return
|
138 |
+
:return: List of results with similarity scores
|
139 |
+
"""
|
140 |
+
query_embedding = self.embedding_model.encode(query)
|
141 |
+
distances, indices = self.index.search(np.array([query_embedding]), top_k)
|
142 |
+
|
143 |
+
results = []
|
144 |
+
for dist, idx in zip(distances[0], indices[0]):
|
145 |
+
if idx < len(self.knowledge_base):
|
146 |
+
similarity = 1 / (1 + dist) # Convert distance to similarity
|
147 |
+
result = self.knowledge_base[idx].copy()
|
148 |
+
result.update({
|
149 |
+
'similarity_score': similarity,
|
150 |
+
'distance': dist
|
151 |
+
})
|
152 |
+
results.append(result)
|
153 |
+
|
154 |
+
return sorted(results, key=lambda x: x['similarity_score'], reverse=True)
|
155 |
+
|
156 |
+
def generate_response(self, query: str, include_confidence: bool = False) -> str:
|
157 |
+
"""
|
158 |
+
Generate response with confidence scoring and language detection
|
159 |
|
160 |
+
:param query: User query
|
161 |
+
:param include_confidence: Whether to include confidence score
|
162 |
+
:return: Generated response
|
163 |
+
"""
|
164 |
+
try:
|
165 |
+
# Detect language
|
166 |
+
lang = detect(query)
|
167 |
+
|
168 |
+
# Find similar questions
|
169 |
+
similar_results = self.find_similar_question(query, top_k=1)
|
170 |
+
|
171 |
+
# Prepare response
|
172 |
+
if similar_results and similar_results[0]['similarity_score'] >= self.similarity_threshold:
|
173 |
+
response = similar_results[0]['answer']
|
174 |
+
if include_confidence:
|
175 |
+
confidence = similar_results[0]['similarity_score']
|
176 |
+
if lang == 'ar':
|
177 |
+
response += f"\n(ثقة الإجابة: {confidence:.2f})"
|
178 |
+
else:
|
179 |
+
response += f"\n(Answer confidence: {confidence:.2f})"
|
180 |
+
else:
|
181 |
+
response = self.FALLBACK_RESPONSES.get(lang, self.FALLBACK_RESPONSES['en'])
|
182 |
+
|
183 |
+
# Update conversation history
|
184 |
+
self.conversation_history.append({
|
185 |
+
'query': query,
|
186 |
+
'response': response,
|
187 |
+
'language': lang,
|
188 |
+
'timestamp': str(datetime.now())
|
189 |
+
})
|
190 |
+
|
191 |
+
return response
|
192 |
|
193 |
+
except Exception as e:
|
194 |
+
print(f"Error generating response: {str(e)}")
|
195 |
+
return self.FALLBACK_RESPONSES['en']
|
196 |
+
|
197 |
+
# Initialize the chatbot
|
198 |
+
chatbot = MultilingualVectorChatbot()
|
199 |
+
|
200 |
+
def chat_interface(message: str, history: List[List[str]]) -> Tuple[str, Any]:
|
201 |
+
"""
|
202 |
+
Gradio chat interface that properly handles state
|
203 |
+
"""
|
204 |
+
try:
|
205 |
+
response = chatbot.generate_response(message, include_confidence=True)
|
206 |
+
return response
|
207 |
+
except Exception as e:
|
208 |
+
print(f"Interface error: {e}")
|
209 |
+
return "An error occurred. Please try again."
|
210 |
+
|
211 |
+
# Create and launch the interface
|
212 |
+
iface = gr.ChatInterface(
|
213 |
+
fn=chat_interface,
|
214 |
+
title="🌍 Multilingual Vector Chatbot",
|
215 |
+
description="Ask me questions in Arabic, English, French, or Spanish about various topics!",
|
216 |
+
theme="soft",
|
217 |
+
examples=[
|
218 |
+
["What is the capital of France?"],
|
219 |
+
["كيف أتعلم البرمجة؟"],
|
220 |
+
["Comment ça va?"],
|
221 |
+
["¿Dónde está el baño?"]
|
222 |
+
],
|
223 |
+
cache_examples=True
|
224 |
+
)
|
225 |
|
226 |
if __name__ == "__main__":
|
227 |
+
iface.launch()
|
|
|
|
|
|
|
|