File size: 10,820 Bytes
7d0b36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import gradio as gr
import re

# Load language detection model only (smaller model)
from transformers import pipeline
language_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")

# Omdurman National Bank-specific guidelines in Arabic
ONB_GUIDELINES_AR = {
    "balance": "يمكنك التحقق من رصيدك عبر الإنترنت أو عبر تطبيق الهاتف الخاص ببنك الوطني.",
    "lost_card": "في حالة فقدان البطاقة، اتصل بالرقم 249-123-456-789 فورًا.",
    "loan": "شروط القرض تشمل الحد الأدنى للدخل (5000 جنيه سوداني) وتاريخ ائتماني جيد.",
    "transfer": "لتحويل الأموال، استخدم تطبيق الهاتف أو الخدمة المصرفية عبر الإنترنت.",
    "new_account": "لفتح حساب جديد، قم بزيارة أقرب فرع مع جواز سفرك أو هويتك الوطنية.",
    "interest_rates": "أسعار الفائدة على الودائع تتراوح بين 5% إلى 10% سنويًا.",
    "branches": "فروعنا موجودة في أم درمان، الخرطوم، وبورتسودان. زيارة موقعنا للتفاصيل.",
    "working_hours": "ساعات العمل من 8 صباحًا إلى 3 مساءً من الأحد إلى الخميس.",
    "contact": "الاتصال بنا على الرقم 249-123-456-789 أو عبر البريد الإلكتروني [email protected]."
}

# Omdurman National Bank-specific guidelines in English
ONB_GUIDELINES_EN = {
    "balance": "You can check your balance online or via the ONB mobile app.",
    "lost_card": "In case of a lost card, call 249-123-456-789 immediately.",
    "loan": "Loan requirements include minimum income (5000 SDG) and good credit history.",
    "transfer": "To transfer funds, use the mobile app or online banking service.",
    "new_account": "To open a new account, visit your nearest branch with your passport or national ID.",
    "interest_rates": "Interest rates on deposits range from 5% to 10% annually.",
    "branches": "Our branches are located in Omdurman, Khartoum, and Port Sudan. Visit our website for details.",
    "working_hours": "Working hours are from 8 AM to 3 PM, Sunday to Thursday.",
    "contact": "Contact us at 249-123-456-789 or via email at [email protected]."
}

# Menu options in both languages
MENU_AR = """
قائمة الخدمات المصرفية:
1. رصيد - استعلام عن رصيد حسابك
2. بطاقة - الإبلاغ عن بطاقة مفقودة
3. قرض - معلومات عن القروض
4. تحويل - تحويل الأموال
5. حساب - فتح حساب جديد
6. فائدة - أسعار الفائدة
7. فرع - مواقع الفروع
8. ساعات - ساعات العمل
9. اتصال - معلومات الاتصال
"""

MENU_EN = """
Banking Services Menu:
1. balance - Check your account balance
2. card - Report a lost card
3. loan - Information about loans
4. transfer - Transfer funds
5. account - Open a new account
6. interest - Interest rates
7. branch - Branch locations
8. hours - Working hours
9. contact - Contact information
"""

# Map intents to keywords (enhanced)
INTENT_KEYWORDS = {
    "balance": ["balance", "check balance", "account balance", "how much", "رصيد", "حساب", "كم المبلغ", "1"],
    "lost_card": ["lost", "card", "stolen", "missing", "فقدت", "بطاقة", "مسروقة", "ضائعة", "2"],
    "loan": ["loan", "borrow", "borrowing", "credit", "قرض", "استدانة", "إئتمان", "3"],
    "transfer": ["transfer", "send money", "payment", "تحويل", "ارسال", "دفع", "4"],
    "new_account": ["account", "open", "create", "new", "حساب", "فتح", "جديد", "إنشاء", "5"],
    "interest_rates": ["interest", "rate", "rates", "return", "فائدة", "نسبة", "عائد", "6"],
    "branches": ["branch", "location", "where", "office", "فرع", "موقع", "أين", "مكتب", "7"],
    "working_hours": ["hours", "time", "open", "close", "ساعات", "وقت", "مفتوح", "مغلق", "8"],
    "contact": ["contact", "phone", "email", "call", "اتصال", "هاتف", "بريد", "اتصل", "9"]
}

def detect_language(text):
    # Use Hugging Face language detection model
    result = language_detector(text)
    language = result[0]['label']
    return language

def classify_intent(message: str):
    # Check for menu request
    menu_keywords = ["menu", "options", "help", "قائمة", "خيارات", "مساعدة"]
    message_lower = message.lower()
    
    for keyword in menu_keywords:
        if keyword in message_lower:
            return "menu"
    
    # Use keyword matching for intent classification
    for intent_key, keywords in INTENT_KEYWORDS.items():
        for keyword in keywords:
            if keyword.lower() in message_lower:
                return intent_key
                
    return "unknown"

def respond(message: str):
    if not message.strip():
        return {
            "ar": "الرجاء كتابة سؤالك.",
            "en": "Please type your question."
        }
    
    # Detect language
    language = detect_language(message)
    
    # If the language is neither Arabic nor English, default to English
    if language != "ar" and language != "en":
        language = "en"
    
    # Classify the user's intent using keyword matching
    intent = classify_intent(message)
    
    # Prepare responses in both languages
    responses = {
        "ar": "",
        "en": ""
    }
    
    # Special handling for menu request
    if intent == "menu":
        responses["ar"] = MENU_AR
        responses["en"] = MENU_EN
        return responses
    
    # If intent is recognized, return the corresponding response
    if intent != "unknown":
        responses["ar"] = ONB_GUIDELINES_AR.get(intent, "عذرًا، لم يتم التعرف على الخيار المحدد.")
        responses["en"] = ONB_GUIDELINES_EN.get(intent, "Sorry, the selected option was not recognized.")
    else:
        # Default response if no intent is matched - show menu
        responses["ar"] = "عذرًا، لم أفهم سؤالك. إليك قائمة بالخدمات المتاحة:" + MENU_AR
        responses["en"] = "Sorry, I didn't understand your question. Here's a menu of available services:" + MENU_EN
    
    return responses

# Custom CSS for better UI
custom_css = """
.gradio-container {
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}

.chat-message {
    padding: 1rem;
    border-radius: 10px;
    margin-bottom: 1rem;
    max-width: 80%;
}

.user-message {
    background-color: #e6f7ff;
    margin-left: auto;
    text-align: right;
}

.bot-message {
    background-color: #f0f0f0;
    margin-right: auto;
    text-align: left;
}

.bot-message-ar {
    background-color: #f0f0f0;
    margin-left: auto;
    text-align: right;
}

.header-section {
    background-color: #1a5276;
    color: white;
    padding: 1rem;
    border-radius: 10px;
    margin-bottom: 1rem;
    text-align: center;
}

.footer-section {
    font-size: 0.8rem;
    text-align: center;
    margin-top: 2rem;
    color: #666;
}

.lang-selector {
    text-align: right;
    margin-bottom: 1rem;
}

.menu-button {
    margin-top: 0.5rem;
}
"""

# Chat interface with enhanced UI
with gr.Blocks(css=custom_css) as demo:
    # Store conversation history
    state = gr.State(value=[])
    # Store selected language
    selected_lang = gr.State(value="ar")
    
    with gr.Row(elem_classes="header-section"):
        with gr.Column():
            gr.Markdown("# Omdurman National Bank | بنك أم درمان الوطني")
            gr.Markdown("### Virtual Banking Assistant | المساعد المصرفي الافتراضي")
    
    with gr.Row():
        with gr.Column(elem_classes="lang-selector"):
            language_btn = gr.Radio(
                ["العربية", "English"], 
                value="العربية", 
                label="Language | اللغة"
            )
    
    with gr.Row():
        chat_box = gr.Chatbot(elem_id="chatbox", height=400)
    
    with gr.Row():
        with gr.Column(scale=8):
            text_input = gr.Textbox(
                placeholder="Type your question here | اكتب سؤالك هنا", 
                label="", 
                elem_id="chat-input"
            )
        with gr.Column(scale=1):
            submit_btn = gr.Button("Send | إرسال", variant="primary")
    
    with gr.Row():
        with gr.Column(elem_classes="menu-button"):
            menu_btn = gr.Button("Show Menu | إظهار القائمة")
    
    with gr.Row(elem_classes="footer-section"):
        gr.Markdown("© 2025 Omdurman National Bank. All Rights Reserved. | جميع الحقوق محفوظة لبنك أم درمان الوطني ٢٠٢٥ ©")
    
    # Update language state when language is changed
    def update_language(lang):
        if lang == "العربية":
            return "ar"
        else:
            return "en"
    
    language_btn.change(
        fn=update_language,
        inputs=language_btn,
        outputs=selected_lang
    )
    
    # Handle message submission
    def on_submit(message, chat_history, lang):
        if not message.strip():
            return "", chat_history
        
        # Add user message to chat history
        chat_history.append([message, None])
        
        # Get response
        responses = respond(message)
        
        # Select response based on language
        response = responses[lang]
        
        # Update bot response in chat history
        chat_history[-1][1] = response
        
        return "", chat_history
    
    # Handle menu button click
    def show_menu(chat_history, lang):
        menu_responses = {
            "ar": MENU_AR,
            "en": MENU_EN
        }
        
        # Add system message showing the menu
        menu_text = menu_responses[lang]
        chat_history.append([None, menu_text])
        
        return chat_history
    
    # Link inputs and button to response function
    submit_btn.click(
        fn=on_submit,
        inputs=[text_input, chat_box, selected_lang],
        outputs=[text_input, chat_box]
    )
    
    # Link menu button to show menu function
    menu_btn.click(
        fn=show_menu,
        inputs=[chat_box, selected_lang],
        outputs=[chat_box]
    )
    
    # Also trigger on Enter key
    text_input.submit(
        fn=on_submit,
        inputs=[text_input, chat_box, selected_lang],
        outputs=[text_input, chat_box]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True  # Enable public link
    )