File size: 6,890 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
 
966694f
 
 
9b5b26a
966694f
9b5b26a
966694f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
3451846
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

@tool
def find_nearest_meteor(address: str) -> str:
    """A tool that finds the nearest meteor landing site based on a given address.
    
    Args:
        address: A string representing an address (e.g., '123 Main St, New York, NY')
    """
    import requests
    import math
    from urllib.parse import quote
    
    def geocode_address(address):
        """Convert address to latitude and longitude using OpenCage API."""
        base_url = "https://api.opencagedata.com/geocode/v1/json"
        api_key = "03c48dae07364cabb7f121d8c1519492"
        
        # URL encode the address
        encoded_address = quote(address)
        
        # Construct the full request URL
        url = f"{base_url}?q={encoded_address}&key={api_key}&no_annotations=1&language=en"
        
        headers = {
            'accept': 'application/json, text/javascript, */*; q=0.01',
            'accept-language': 'pt-BR,pt;q=0.9,en-US;q=0.8,en;q=0.7',
            'origin': 'https://www.gps-coordinates.net',
            'referer': 'https://www.gps-coordinates.net/',
            'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36'
        }
        
        try:
            response = requests.get(url, headers=headers)
            data = response.json()
            
            if data['total_results'] > 0:
                location = data['results'][0]['geometry']
                return {
                    'lat': location['lat'],
                    'lng': location['lng'],
                    'formatted_address': data['results'][0]['formatted']
                }
            else:
                return None
        except Exception as e:
            return f"Error geocoding address: {str(e)}"
    
    def get_meteor_data():
        """Fetch meteor landing site data from NASA API."""
        url = "https://data.nasa.gov/resource/gh4g-9sfh.json"
        try:
            response = requests.get(url)
            return response.json()
        except Exception as e:
            return f"Error fetching meteor data: {str(e)}"
    
    def calculate_distance(lat1, lon1, lat2, lon2):
        """Calculate the great circle distance between two points on earth."""
        # Radius of earth in kilometers
        R = 6371.0
        
        # Convert latitude and longitude from degrees to radians
        lat1_rad = math.radians(lat1)
        lon1_rad = math.radians(lon1)
        lat2_rad = math.radians(lat2)
        lon2_rad = math.radians(lon2)
        
        # Difference in coordinates
        dlon = lon2_rad - lon1_rad
        dlat = lat2_rad - lat1_rad
        
        # Haversine formula
        a = math.sin(dlat / 2)**2 + math.cos(lat1_rad) * math.cos(lat2_rad) * math.sin(dlon / 2)**2
        c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
        distance = R * c
        
        return distance
    
    # Geocode the address
    location_data = geocode_address(address)
    if not location_data or isinstance(location_data, str):
        return f"Could not geocode address: {address}. {location_data if isinstance(location_data, str) else ''}"
    
    # Get meteor data
    meteor_data = get_meteor_data()
    if isinstance(meteor_data, str):
        return meteor_data
    
    # Calculate distance to each meteor
    nearest_meteor = None
    min_distance = float('inf')
    
    for meteor in meteor_data:
        # Check if meteor has geolocation data
        if 'geolocation' in meteor and meteor['geolocation'] and 'latitude' in meteor['geolocation'] and 'longitude' in meteor['geolocation']:
            try:
                meteor_lat = float(meteor['geolocation']['latitude'])
                meteor_lng = float(meteor['geolocation']['longitude'])
                
                distance = calculate_distance(
                    location_data['lat'], 
                    location_data['lng'], 
                    meteor_lat, 
                    meteor_lng
                )
                
                if distance < min_distance:
                    min_distance = distance
                    nearest_meteor = meteor
            except (ValueError, TypeError):
                # Skip entries with invalid coordinates
                continue
    
    if nearest_meteor:
        # Format the response
        name = nearest_meteor.get('name', 'Unknown')
        year = nearest_meteor.get('year', 'Unknown year')
        mass = nearest_meteor.get('mass', 'Unknown mass')
        recclass = nearest_meteor.get('recclass', 'Unknown classification')
        
        return (
            f"Nearest meteor to {location_data['formatted_address']}:\n"
            f"Name: {name}\n"
            f"Year: {year}\n"
            f"Classification: {recclass}\n"
            f"Mass (grams): {mass}\n"
            f"Distance: {min_distance:.2f} km\n"
            f"Coordinates: {nearest_meteor['geolocation']['latitude']}, {nearest_meteor['geolocation']['longitude']}"
        )
    else:
        return "No meteor landing sites found with valid coordinates."
@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[find_nearest_meteor, final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()