wakeupmh commited on
Commit
f3b971a
·
1 Parent(s): 03e43ae

refactor: improve response

Browse files
Files changed (1) hide show
  1. app.py +23 -20
app.py CHANGED
@@ -17,7 +17,7 @@ DATA_DIR = "/data" if os.path.exists("/data") else "."
17
  DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
18
  DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
19
  TOKENIZER_MODEL = "google/flan-t5-small"
20
- SUMMARIZATION_MODEL= "Falconsai/text_summarization"
21
 
22
  @st.cache_resource
23
  def load_local_model():
@@ -209,44 +209,47 @@ def generate_answer(question, context, max_length=512):
209
  clean_question = clean_text(question)
210
 
211
  # Format the input for T5 (it expects a specific format)
212
- input_text = f"""Generate a detailed and well-structured answer about autism, using the provided research papers as references to support your explanations.
 
213
 
214
  Question: {clean_question}
215
 
216
- Research Papers:
217
  {clean_context}
218
 
219
- Instructions:
220
- 1. Begin with a clear and concise overview of autism, explaining its key characteristics and significance.
221
- 2. Use the research papers to support your explanation, citing them in the format: "According to [PAPER TITLE], ...".
222
- 3. Integrate findings from the papers naturally into your response, ensuring the information is accurate and relevant.
223
- 4. Focus on providing informative, helpful, and easy-to-understand insights.
224
 
225
- Write your answer in a professional and accessible tone, ensuring it is well-organized and grounded in the provided research."""
 
 
 
 
 
226
 
227
  try:
228
  # T5 expects a specific format for the input
229
  inputs = tokenizer(input_text,
230
- return_tensors="pt",
231
- max_length=1024,
232
- truncation=True,
233
- padding=True)
234
-
235
  with torch.inference_mode():
236
  outputs = model.generate(
237
  **inputs,
238
  max_length=max_length,
239
  min_length=200,
240
- num_beams=5,
241
- length_penalty=1.5,
242
- temperature=0.7,
243
  repetition_penalty=1.2,
244
  early_stopping=True,
245
- no_repeat_ngram_size=3,
246
  do_sample=True,
247
- top_k=50,
248
- top_p=0.95
249
  )
 
250
 
251
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
252
  response = clean_text(response)
 
17
  DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
18
  DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
19
  TOKENIZER_MODEL = "google/flan-t5-small"
20
+ SUMMARIZATION_MODEL= "tiiuae/falcon-40b"
21
 
22
  @st.cache_resource
23
  def load_local_model():
 
209
  clean_question = clean_text(question)
210
 
211
  # Format the input for T5 (it expects a specific format)
212
+ input_text = f"""Objective:
213
+ Generate a clear, informative, and well-structured answer about autism, making the content easy to understand for a general audience. Use the provided research papers to support your explanations.
214
 
215
  Question: {clean_question}
216
 
217
+ Research Papers:
218
  {clean_context}
219
 
220
+ Instructions:
 
 
 
 
221
 
222
+ Start with a simple explanation Clearly define what autism is in an easy-to-understand way, avoiding overly complex technical terms.
223
+ Use real-life examples – Whenever possible, include practical examples to illustrate key concepts.
224
+ Cite research in an accessible way – Instead of just referencing papers, explain their findings in a way that anyone can understand. Example: "A study from X University found that..."
225
+ Avoid scientific jargon – If a technical term is necessary, provide a simple explanation.
226
+ Organize the response into sections – Use lists and short paragraphs to improve readability.
227
+ Write your answer in a friendly and accessible tone, ensuring that anyone, regardless of their background knowledge, can understand the information provided."""
228
 
229
  try:
230
  # T5 expects a specific format for the input
231
  inputs = tokenizer(input_text,
232
+ return_tensors="pt",
233
+ max_length=1024,
234
+ truncation=True,
235
+ padding=True)
236
+
237
  with torch.inference_mode():
238
  outputs = model.generate(
239
  **inputs,
240
  max_length=max_length,
241
  min_length=200,
242
+ num_beams=3, # Reduzindo para mais variedade
243
+ length_penalty=1.2, # Melhor equilíbrio entre concisão e detalhes
244
+ temperature=0.8, # Aumentando um pouco para mais fluidez
245
  repetition_penalty=1.2,
246
  early_stopping=True,
247
+ no_repeat_ngram_size=2, # Mantendo variação no texto
248
  do_sample=True,
249
+ top_k=30, # Reduzindo para respostas mais coerentes
250
+ top_p=0.9 # Equilibrando diversidade e precisão
251
  )
252
+
253
 
254
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
255
  response = clean_text(response)