File size: 2,373 Bytes
f1586e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import streamlit as st
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import arxiv

# Title
st.title("arXiv RAG with Streamlit")

# Input: Query
query = st.text_input("Enter your query:")

# Fetch arXiv papers
def fetch_arxiv_papers(query, max_results=5):
    client = arxiv.Client()
    search = arxiv.Search(
        query=query,
        max_results=max_results,
        sort_by=arxiv.SortCriterion.SubmittedDate
    )
    results = list(client.results(search))
    papers = [{"title": result.title, "summary": result.summary, "pdf_url": result.pdf_url} for result in results]
    return papers

# RAG Pipeline
def rag_pipeline(query, papers):
    # Load pre-trained RAG model
    tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
    retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom")
    model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)

    # Encode papers into embeddings
    embedder = SentenceTransformer('all-MiniLM-L6-v2')
    paper_embeddings = embedder.encode([paper["summary"] for paper in papers])

    # Build FAISS index
    index = faiss.IndexFlatL2(paper_embeddings.shape[1])
    index.add(paper_embeddings)

    # Retrieve relevant papers
    query_embedding = embedder.encode([query])
    distances, indices = index.search(query_embedding, k=2)  # Top 2 relevant papers
    relevant_papers = [papers[i] for i in indices[0]]

    # Generate answer using RAG
    inputs = tokenizer(query, return_tensors="pt")
    generated_ids = model.generate(inputs["input_ids"])
    answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    return answer, relevant_papers

# Run the app
if query:
    st.write("Fetching arXiv papers...")
    papers = fetch_arxiv_papers(query)
    st.write(f"Found {len(papers)} papers.")

    st.write("Running RAG pipeline...")
    answer, relevant_papers = rag_pipeline(query, papers)

    st.write("### Answer:")
    st.write(answer)

    st.write("### Relevant Papers:")
    for paper in relevant_papers:
        st.write(f"**Title:** {paper['title']}")
        st.write(f"**Summary:** {paper['summary']}")
        st.write(f"**PDF URL:** {paper['pdf_url']}")
        st.write("---")