Spaces:
Sleeping
Sleeping
add tools
Browse files- app.py +3 -3
- requirements.txt +2 -1
- services/model_handler.py +282 -82
app.py
CHANGED
@@ -22,7 +22,7 @@ class AutismResearchApp:
|
|
22 |
Pergunte o que quiser e eu vou analisar os últimos artigos científicos e fornecer uma resposta baseada em evidências.
|
23 |
""")
|
24 |
|
25 |
-
def run(self):
|
26 |
"""Run the main application loop"""
|
27 |
self._setup_streamlit()
|
28 |
|
@@ -49,7 +49,7 @@ class AutismResearchApp:
|
|
49 |
# Sempre usar o modelo, nunca a resposta padrão
|
50 |
self.model_handler.force_default_response = False
|
51 |
|
52 |
-
answer = self.model_handler.
|
53 |
|
54 |
status.write("✨ Resposta gerada! Exibindo resultados...")
|
55 |
|
@@ -61,7 +61,7 @@ class AutismResearchApp:
|
|
61 |
|
62 |
def main():
|
63 |
app = AutismResearchApp()
|
64 |
-
app.run()
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
main()
|
|
|
22 |
Pergunte o que quiser e eu vou analisar os últimos artigos científicos e fornecer uma resposta baseada em evidências.
|
23 |
""")
|
24 |
|
25 |
+
async def run(self):
|
26 |
"""Run the main application loop"""
|
27 |
self._setup_streamlit()
|
28 |
|
|
|
49 |
# Sempre usar o modelo, nunca a resposta padrão
|
50 |
self.model_handler.force_default_response = False
|
51 |
|
52 |
+
answer = await self.model_handler.generate_answer_async(query)
|
53 |
|
54 |
status.write("✨ Resposta gerada! Exibindo resultados...")
|
55 |
|
|
|
61 |
|
62 |
def main():
|
63 |
app = AutismResearchApp()
|
64 |
+
asyncio.run(app.run())
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
main()
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ agno==1.1.5
|
|
9 |
pypdf>=3.11.1
|
10 |
watchdog>=2.3.1
|
11 |
sentencepiece>=0.1.99
|
12 |
-
tenacity>=8.2.2
|
|
|
|
9 |
pypdf>=3.11.1
|
10 |
watchdog>=2.3.1
|
11 |
sentencepiece>=0.1.99
|
12 |
+
tenacity>=8.2.2
|
13 |
+
asyncio
|
services/model_handler.py
CHANGED
@@ -9,8 +9,27 @@ from tenacity import retry, stop_after_attempt, wait_exponential
|
|
9 |
import time
|
10 |
import datetime
|
11 |
import os
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Simple Response class to wrap the model output
|
16 |
class Response:
|
@@ -56,55 +75,56 @@ class Response:
|
|
56 |
return self.content if self.content else ""
|
57 |
|
58 |
def __repr__(self):
|
59 |
-
return f"Response(content='{self.content}')"
|
60 |
|
61 |
-
#
|
62 |
class LocalHuggingFaceModel(Model):
|
63 |
-
def __init__(self, model, tokenizer, max_length=512):
|
64 |
-
super().__init__(id=
|
65 |
self.model = model
|
66 |
self.tokenizer = tokenizer
|
67 |
self.max_length = max_length
|
|
|
68 |
|
69 |
async def ainvoke(self, prompt: str, **kwargs) -> str:
|
70 |
"""Async invoke method"""
|
71 |
try:
|
72 |
-
logging.info(f"ainvoke called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
73 |
return await self.invoke(prompt, **kwargs)
|
74 |
except Exception as e:
|
75 |
-
logging.error(f"Error in ainvoke: {str(e)}")
|
76 |
return Response(f"Error in ainvoke: {str(e)}")
|
77 |
|
78 |
async def ainvoke_stream(self, prompt: str, **kwargs):
|
79 |
"""Async streaming invoke method"""
|
80 |
try:
|
81 |
-
logging.info(f"ainvoke_stream called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
82 |
result = await self.invoke(prompt, **kwargs)
|
83 |
yield result
|
84 |
except Exception as e:
|
85 |
-
logging.error(f"Error in ainvoke_stream: {str(e)}")
|
86 |
yield Response(f"Error in ainvoke_stream: {str(e)}")
|
87 |
|
88 |
def invoke(self, prompt: str, **kwargs) -> str:
|
89 |
"""Synchronous invoke method"""
|
90 |
try:
|
91 |
-
logging.info(f"Invoking model with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
92 |
|
93 |
# Check if prompt is None or empty
|
94 |
if prompt is None:
|
95 |
-
logging.warning("None prompt provided to invoke method")
|
96 |
return Response("No input provided. Please provide a valid prompt.")
|
97 |
|
98 |
if not isinstance(prompt, str):
|
99 |
-
logging.warning(f"Non-string prompt provided: {type(prompt)}")
|
100 |
try:
|
101 |
prompt = str(prompt)
|
102 |
-
logging.info(f"Converted prompt to string: {prompt[:100]}...")
|
103 |
except:
|
104 |
return Response("Invalid input type. Please provide a string prompt.")
|
105 |
|
106 |
if not prompt.strip():
|
107 |
-
logging.warning("Empty prompt provided to invoke method")
|
108 |
return Response("No input provided. Please provide a non-empty prompt.")
|
109 |
|
110 |
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
|
@@ -124,13 +144,13 @@ class LocalHuggingFaceModel(Model):
|
|
124 |
|
125 |
# Check if output is empty
|
126 |
if not decoded_output or not decoded_output.strip():
|
127 |
-
logging.warning("Model generated empty output")
|
128 |
return Response("The model did not generate any output. Please try with a different prompt.")
|
129 |
|
130 |
-
logging.info(f"Model generated output: {decoded_output[:100]}...")
|
131 |
return Response(decoded_output)
|
132 |
except Exception as e:
|
133 |
-
logging.error(f"Error in local model generation: {str(e)}")
|
134 |
if hasattr(e, 'args') and len(e.args) > 0:
|
135 |
error_message = e.args[0]
|
136 |
else:
|
@@ -140,11 +160,11 @@ class LocalHuggingFaceModel(Model):
|
|
140 |
def invoke_stream(self, prompt: str, **kwargs):
|
141 |
"""Synchronous streaming invoke method"""
|
142 |
try:
|
143 |
-
logging.info(f"invoke_stream called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
144 |
result = self.invoke(prompt, **kwargs)
|
145 |
yield result
|
146 |
except Exception as e:
|
147 |
-
logging.error(f"Error in invoke_stream: {str(e)}")
|
148 |
yield Response(f"Error in invoke_stream: {str(e)}")
|
149 |
|
150 |
def parse_provider_response(self, response: str) -> str:
|
@@ -159,7 +179,7 @@ class LocalHuggingFaceModel(Model):
|
|
159 |
"""Async response method - required abstract method"""
|
160 |
try:
|
161 |
# Log detalhado de todos os argumentos
|
162 |
-
logging.info(f"aresponse args: prompt={prompt}, kwargs keys={list(kwargs.keys())}")
|
163 |
|
164 |
# Extrair o prompt das mensagens se estiverem disponíveis
|
165 |
if prompt is None and 'messages' in kwargs and kwargs['messages']:
|
@@ -168,32 +188,32 @@ class LocalHuggingFaceModel(Model):
|
|
168 |
for message in messages:
|
169 |
if hasattr(message, 'role') and message.role == 'user' and hasattr(message, 'content'):
|
170 |
prompt = message.content
|
171 |
-
logging.info(f"Extracted prompt from user message: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
172 |
break
|
173 |
|
174 |
# Verificar se o prompt está em kwargs['input']
|
175 |
if prompt is None:
|
176 |
if 'input' in kwargs:
|
177 |
prompt = kwargs.get('input')
|
178 |
-
logging.info(f"Found prompt in kwargs['input']: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
179 |
|
180 |
-
logging.info(f"aresponse called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
181 |
|
182 |
if not prompt or not isinstance(prompt, str) or not prompt.strip():
|
183 |
-
logging.warning("Empty or invalid prompt in aresponse")
|
184 |
return Response("No input provided. Please provide a valid prompt.")
|
185 |
|
186 |
content = await self.ainvoke(prompt, **kwargs)
|
187 |
return content if isinstance(content, Response) else Response(content)
|
188 |
except Exception as e:
|
189 |
-
logging.error(f"Error in aresponse: {str(e)}")
|
190 |
return Response(f"Error in aresponse: {str(e)}")
|
191 |
|
192 |
def response(self, prompt=None, **kwargs):
|
193 |
"""Synchronous response method - required abstract method"""
|
194 |
try:
|
195 |
# Log detalhado de todos os argumentos
|
196 |
-
logging.info(f"response args: prompt={prompt}, kwargs keys={list(kwargs.keys())}")
|
197 |
|
198 |
# Extrair o prompt das mensagens se estiverem disponíveis
|
199 |
if prompt is None and 'messages' in kwargs and kwargs['messages']:
|
@@ -202,32 +222,32 @@ class LocalHuggingFaceModel(Model):
|
|
202 |
for message in messages:
|
203 |
if hasattr(message, 'role') and message.role == 'user' and hasattr(message, 'content'):
|
204 |
prompt = message.content
|
205 |
-
logging.info(f"Extracted prompt from user message: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
206 |
break
|
207 |
|
208 |
# Verificar se o prompt está em kwargs['input']
|
209 |
if prompt is None:
|
210 |
if 'input' in kwargs:
|
211 |
prompt = kwargs.get('input')
|
212 |
-
logging.info(f"Found prompt in kwargs['input']: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
213 |
|
214 |
-
logging.info(f"response called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
215 |
|
216 |
if not prompt or not isinstance(prompt, str) or not prompt.strip():
|
217 |
-
logging.warning("Empty or invalid prompt in response")
|
218 |
return Response("No input provided. Please provide a valid prompt.")
|
219 |
|
220 |
content = self.invoke(prompt, **kwargs)
|
221 |
return content if isinstance(content, Response) else Response(content)
|
222 |
except Exception as e:
|
223 |
-
logging.error(f"Error in response: {str(e)}")
|
224 |
return Response(f"Error in response: {str(e)}")
|
225 |
|
226 |
def response_stream(self, prompt=None, **kwargs):
|
227 |
"""Synchronous streaming response method - required abstract method"""
|
228 |
try:
|
229 |
# Log detalhado de todos os argumentos
|
230 |
-
logging.info(f"response_stream args: prompt={prompt}, kwargs keys={list(kwargs.keys())}")
|
231 |
|
232 |
# Extrair o prompt das mensagens se estiverem disponíveis
|
233 |
if prompt is None and 'messages' in kwargs and kwargs['messages']:
|
@@ -236,26 +256,26 @@ class LocalHuggingFaceModel(Model):
|
|
236 |
for message in messages:
|
237 |
if hasattr(message, 'role') and message.role == 'user' and hasattr(message, 'content'):
|
238 |
prompt = message.content
|
239 |
-
logging.info(f"Extracted prompt from user message: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
240 |
break
|
241 |
|
242 |
# Verificar se o prompt está em kwargs['input']
|
243 |
if prompt is None:
|
244 |
if 'input' in kwargs:
|
245 |
prompt = kwargs.get('input')
|
246 |
-
logging.info(f"Found prompt in kwargs['input']: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
247 |
|
248 |
-
logging.info(f"response_stream called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
249 |
|
250 |
if not prompt or not isinstance(prompt, str) or not prompt.strip():
|
251 |
-
logging.warning("Empty or invalid prompt in response_stream")
|
252 |
yield Response("No input provided. Please provide a valid prompt.")
|
253 |
return
|
254 |
|
255 |
for chunk in self.invoke_stream(prompt, **kwargs):
|
256 |
yield chunk if isinstance(chunk, Response) else Response(chunk)
|
257 |
except Exception as e:
|
258 |
-
logging.error(f"Error in response_stream: {str(e)}")
|
259 |
yield Response(f"Error in response_stream: {str(e)}")
|
260 |
|
261 |
def generate(self, prompt: str, **kwargs):
|
@@ -277,7 +297,7 @@ class LocalHuggingFaceModel(Model):
|
|
277 |
|
278 |
return decoded_output
|
279 |
except Exception as e:
|
280 |
-
logging.error(f"Error in generate method: {str(e)}")
|
281 |
if hasattr(e, 'args') and len(e.args) > 0:
|
282 |
error_message = e.args[0]
|
283 |
else:
|
@@ -286,17 +306,18 @@ class LocalHuggingFaceModel(Model):
|
|
286 |
|
287 |
class ModelHandler:
|
288 |
"""
|
289 |
-
Classe para gerenciar modelos e gerar respostas.
|
290 |
"""
|
291 |
|
292 |
def __init__(self):
|
293 |
"""
|
294 |
-
Inicializa o ModelHandler.
|
295 |
"""
|
296 |
self.translator = None
|
297 |
self.researcher = None
|
298 |
self.presenter = None
|
299 |
self.force_default_response = False
|
|
|
300 |
|
301 |
# Inicializar modelos
|
302 |
self._load_models()
|
@@ -360,6 +381,10 @@ Please provide a detailed explanation about the topic, including:
|
|
360 |
- Recent developments or research
|
361 |
- Real-world implications and applications
|
362 |
|
|
|
|
|
|
|
|
|
363 |
Aim to write at least 4-5 paragraphs with detailed information.
|
364 |
Be thorough and informative, covering all important aspects of the topic.
|
365 |
Use clear and accessible language suitable for a general audience.
|
@@ -388,16 +413,45 @@ Output:"""
|
|
388 |
else:
|
389 |
logging.error(f"Unknown prompt type: {prompt_type}")
|
390 |
return f"Unknown prompt type: {prompt_type}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
@staticmethod
|
393 |
@st.cache_resource
|
394 |
-
def
|
395 |
-
"""Load
|
396 |
# Define retry decorator for model loading
|
397 |
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
398 |
def load_with_retry(model_name):
|
399 |
try:
|
400 |
-
logging.info(f"Attempting to load model from {model_name}")
|
401 |
|
402 |
# Criar diretório de cache se não existir
|
403 |
cache_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "model_cache")
|
@@ -407,10 +461,10 @@ Output:"""
|
|
407 |
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
408 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, cache_dir=cache_dir)
|
409 |
|
410 |
-
logging.info(f"Successfully loaded model from {model_name}")
|
411 |
return model, tokenizer
|
412 |
except Exception as e:
|
413 |
-
logging.error(f"Error loading model {model_name}: {str(e)}")
|
414 |
raise
|
415 |
|
416 |
# Lista de modelos para tentar, em ordem de preferência
|
@@ -421,50 +475,179 @@ Output:"""
|
|
421 |
try:
|
422 |
return load_with_retry(model_name)
|
423 |
except Exception as e:
|
424 |
-
logging.error(f"Failed to load {model_name}: {str(e)}")
|
425 |
continue
|
426 |
|
427 |
# Se todos os modelos falharem, retornar None
|
428 |
-
logging.error("All models failed to load")
|
429 |
return None, None
|
430 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
def _load_models(self):
|
432 |
-
"""Carrega
|
433 |
-
#
|
434 |
-
|
|
|
|
|
435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
self.translator = Agent(
|
437 |
name="Translator",
|
438 |
role="You will translate the query to English",
|
439 |
-
model=
|
440 |
goal="Translate to English",
|
441 |
instructions=[
|
442 |
-
"Translate the query to English"
|
|
|
|
|
443 |
]
|
444 |
)
|
445 |
|
|
|
446 |
self.researcher = Agent(
|
447 |
name="Researcher",
|
448 |
role="You are a research scholar who specializes in autism research.",
|
449 |
-
model=
|
450 |
instructions=[
|
451 |
"You need to understand the context of the question to provide the best answer.",
|
452 |
"Be precise and provide detailed information.",
|
453 |
"You must create an accessible explanation.",
|
454 |
"The content must be for people without autism knowledge.",
|
455 |
"Focus on providing comprehensive information about the topic.",
|
456 |
-
"Include definition, characteristics, causes, and current understanding."
|
|
|
|
|
|
|
457 |
],
|
458 |
tools=[
|
459 |
-
ArxivTools(),
|
460 |
-
PubmedTools()
|
461 |
-
]
|
|
|
462 |
)
|
463 |
|
464 |
self.presenter = Agent(
|
465 |
name="Presenter",
|
466 |
role="You are a professional researcher who presents the results of the research.",
|
467 |
-
model=
|
468 |
instructions=[
|
469 |
"You are multilingual",
|
470 |
"You must present the results in a clear and engaging manner.",
|
@@ -472,19 +655,38 @@ Output:"""
|
|
472 |
"Provide simple explanations of complex concepts.",
|
473 |
"Include a brief conclusion or summary.",
|
474 |
"Add emojis to make the presentation more interactive.",
|
475 |
-
"Translate the answer to Portuguese."
|
|
|
|
|
476 |
]
|
477 |
)
|
|
|
|
|
478 |
|
479 |
-
def
|
480 |
-
"""
|
481 |
-
|
482 |
|
483 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
|
485 |
-
def
|
486 |
"""
|
487 |
-
Gera uma resposta baseada na consulta do usuário.
|
488 |
|
489 |
Args:
|
490 |
query: A consulta do usuário
|
@@ -509,7 +711,7 @@ Output:"""
|
|
509 |
logging.info(f"Translation prompt: {translation_prompt}")
|
510 |
|
511 |
try:
|
512 |
-
translation_result = self.translator.
|
513 |
logging.info(f"Translation result type: {type(translation_result)}")
|
514 |
|
515 |
# Extrair o conteúdo da resposta
|
@@ -520,12 +722,11 @@ Output:"""
|
|
520 |
logging.error("Empty translation result")
|
521 |
return "Desculpe, não foi possível processar sua consulta. Por favor, tente novamente com uma pergunta diferente."
|
522 |
|
523 |
-
|
524 |
-
# Realizar a pesquisa
|
525 |
research_prompt = self._format_prompt("research", translation_content)
|
526 |
logging.info(f"Research prompt: {research_prompt}")
|
527 |
|
528 |
-
research_result = self.researcher
|
529 |
logging.info(f"Research result type: {type(research_result)}")
|
530 |
|
531 |
# Extrair o conteúdo da pesquisa
|
@@ -541,16 +742,16 @@ Output:"""
|
|
541 |
# Tentar novamente com um prompt mais específico
|
542 |
enhanced_prompt = f"""Task: Detailed Research
|
543 |
|
544 |
-
Instructions:
|
545 |
-
Provide a comprehensive explanation about '{translation_content}'.
|
546 |
-
Include definition, characteristics, causes, and current understanding.
|
547 |
-
Write at least 4-5 paragraphs with detailed information.
|
548 |
-
Be thorough and informative, covering all important aspects of the topic.
|
549 |
-
Use clear and accessible language suitable for a general audience.
|
550 |
|
551 |
-
Output:"""
|
552 |
logging.info(f"Enhanced research prompt: {enhanced_prompt}")
|
553 |
-
research_result = self.researcher
|
554 |
research_content = self._extract_content(research_result)
|
555 |
research_length = len(research_content.strip()) if research_content and isinstance(research_content, str) else 0
|
556 |
logging.info(f"Enhanced research content: {research_content}")
|
@@ -562,11 +763,11 @@ Output:"""
|
|
562 |
logging.info("Using default research content")
|
563 |
research_content = self._get_default_research_content(translation_content)
|
564 |
|
565 |
-
|
566 |
presentation_prompt = self._format_prompt("presentation", research_content)
|
567 |
logging.info(f"Presentation prompt: {presentation_prompt}")
|
568 |
|
569 |
-
presentation_result = self.presenter.
|
570 |
logging.info(f"Presentation type: {type(presentation_result)}")
|
571 |
|
572 |
presentation_content = self._extract_content(presentation_result)
|
@@ -586,6 +787,5 @@ Output:"""
|
|
586 |
return f"Desculpe, ocorreu um erro ao processar sua consulta: {str(e)}. Por favor, tente novamente mais tarde."
|
587 |
|
588 |
except Exception as e:
|
589 |
-
logging.error(f"Unexpected error in
|
590 |
-
return "Desculpe, ocorreu um erro inesperado. Por favor, tente novamente mais tarde."
|
591 |
-
|
|
|
9 |
import time
|
10 |
import datetime
|
11 |
import os
|
12 |
+
from typing import Tuple, Optional, Dict, Any, List
|
13 |
|
14 |
+
# Configuração de logging
|
15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# Configurações dos modelos
|
19 |
+
MODEL_CONFIG = {
|
20 |
+
"translator": {
|
21 |
+
"primary": "facebook/nllb-200-distilled-600M",
|
22 |
+
"fallback": "google/flan-t5-base"
|
23 |
+
},
|
24 |
+
"researcher": {
|
25 |
+
"primary": "google/flan-t5-large",
|
26 |
+
"fallback": "google/flan-t5-base"
|
27 |
+
},
|
28 |
+
"presenter": {
|
29 |
+
"primary": "bigscience/bloomz-1b7",
|
30 |
+
"fallback": "google/flan-t5-base"
|
31 |
+
}
|
32 |
+
}
|
33 |
|
34 |
# Simple Response class to wrap the model output
|
35 |
class Response:
|
|
|
75 |
return self.content if self.content else ""
|
76 |
|
77 |
def __repr__(self):
|
78 |
+
return f"Response(content='{self.content[:50]}{'...' if len(self.content) > 50 else ''}')"
|
79 |
|
80 |
+
# Personalizada classe para modelos locais
|
81 |
class LocalHuggingFaceModel(Model):
|
82 |
+
def __init__(self, model, tokenizer, model_id="local-huggingface", max_length=512):
|
83 |
+
super().__init__(id=model_id)
|
84 |
self.model = model
|
85 |
self.tokenizer = tokenizer
|
86 |
self.max_length = max_length
|
87 |
+
self.model_name = model_id
|
88 |
|
89 |
async def ainvoke(self, prompt: str, **kwargs) -> str:
|
90 |
"""Async invoke method"""
|
91 |
try:
|
92 |
+
logging.info(f"[{self.model_name}] ainvoke called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
93 |
return await self.invoke(prompt, **kwargs)
|
94 |
except Exception as e:
|
95 |
+
logging.error(f"[{self.model_name}] Error in ainvoke: {str(e)}")
|
96 |
return Response(f"Error in ainvoke: {str(e)}")
|
97 |
|
98 |
async def ainvoke_stream(self, prompt: str, **kwargs):
|
99 |
"""Async streaming invoke method"""
|
100 |
try:
|
101 |
+
logging.info(f"[{self.model_name}] ainvoke_stream called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
102 |
result = await self.invoke(prompt, **kwargs)
|
103 |
yield result
|
104 |
except Exception as e:
|
105 |
+
logging.error(f"[{self.model_name}] Error in ainvoke_stream: {str(e)}")
|
106 |
yield Response(f"Error in ainvoke_stream: {str(e)}")
|
107 |
|
108 |
def invoke(self, prompt: str, **kwargs) -> str:
|
109 |
"""Synchronous invoke method"""
|
110 |
try:
|
111 |
+
logging.info(f"[{self.model_name}] Invoking model with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
112 |
|
113 |
# Check if prompt is None or empty
|
114 |
if prompt is None:
|
115 |
+
logging.warning(f"[{self.model_name}] None prompt provided to invoke method")
|
116 |
return Response("No input provided. Please provide a valid prompt.")
|
117 |
|
118 |
if not isinstance(prompt, str):
|
119 |
+
logging.warning(f"[{self.model_name}] Non-string prompt provided: {type(prompt)}")
|
120 |
try:
|
121 |
prompt = str(prompt)
|
122 |
+
logging.info(f"[{self.model_name}] Converted prompt to string: {prompt[:100]}...")
|
123 |
except:
|
124 |
return Response("Invalid input type. Please provide a string prompt.")
|
125 |
|
126 |
if not prompt.strip():
|
127 |
+
logging.warning(f"[{self.model_name}] Empty prompt provided to invoke method")
|
128 |
return Response("No input provided. Please provide a non-empty prompt.")
|
129 |
|
130 |
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
|
|
|
144 |
|
145 |
# Check if output is empty
|
146 |
if not decoded_output or not decoded_output.strip():
|
147 |
+
logging.warning(f"[{self.model_name}] Model generated empty output")
|
148 |
return Response("The model did not generate any output. Please try with a different prompt.")
|
149 |
|
150 |
+
logging.info(f"[{self.model_name}] Model generated output: {decoded_output[:100]}...")
|
151 |
return Response(decoded_output)
|
152 |
except Exception as e:
|
153 |
+
logging.error(f"[{self.model_name}] Error in local model generation: {str(e)}")
|
154 |
if hasattr(e, 'args') and len(e.args) > 0:
|
155 |
error_message = e.args[0]
|
156 |
else:
|
|
|
160 |
def invoke_stream(self, prompt: str, **kwargs):
|
161 |
"""Synchronous streaming invoke method"""
|
162 |
try:
|
163 |
+
logging.info(f"[{self.model_name}] invoke_stream called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
164 |
result = self.invoke(prompt, **kwargs)
|
165 |
yield result
|
166 |
except Exception as e:
|
167 |
+
logging.error(f"[{self.model_name}] Error in invoke_stream: {str(e)}")
|
168 |
yield Response(f"Error in invoke_stream: {str(e)}")
|
169 |
|
170 |
def parse_provider_response(self, response: str) -> str:
|
|
|
179 |
"""Async response method - required abstract method"""
|
180 |
try:
|
181 |
# Log detalhado de todos os argumentos
|
182 |
+
logging.info(f"[{self.model_name}] aresponse args: prompt={prompt}, kwargs keys={list(kwargs.keys())}")
|
183 |
|
184 |
# Extrair o prompt das mensagens se estiverem disponíveis
|
185 |
if prompt is None and 'messages' in kwargs and kwargs['messages']:
|
|
|
188 |
for message in messages:
|
189 |
if hasattr(message, 'role') and message.role == 'user' and hasattr(message, 'content'):
|
190 |
prompt = message.content
|
191 |
+
logging.info(f"[{self.model_name}] Extracted prompt from user message: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
192 |
break
|
193 |
|
194 |
# Verificar se o prompt está em kwargs['input']
|
195 |
if prompt is None:
|
196 |
if 'input' in kwargs:
|
197 |
prompt = kwargs.get('input')
|
198 |
+
logging.info(f"[{self.model_name}] Found prompt in kwargs['input']: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
199 |
|
200 |
+
logging.info(f"[{self.model_name}] aresponse called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
201 |
|
202 |
if not prompt or not isinstance(prompt, str) or not prompt.strip():
|
203 |
+
logging.warning(f"[{self.model_name}] Empty or invalid prompt in aresponse")
|
204 |
return Response("No input provided. Please provide a valid prompt.")
|
205 |
|
206 |
content = await self.ainvoke(prompt, **kwargs)
|
207 |
return content if isinstance(content, Response) else Response(content)
|
208 |
except Exception as e:
|
209 |
+
logging.error(f"[{self.model_name}] Error in aresponse: {str(e)}")
|
210 |
return Response(f"Error in aresponse: {str(e)}")
|
211 |
|
212 |
def response(self, prompt=None, **kwargs):
|
213 |
"""Synchronous response method - required abstract method"""
|
214 |
try:
|
215 |
# Log detalhado de todos os argumentos
|
216 |
+
logging.info(f"[{self.model_name}] response args: prompt={prompt}, kwargs keys={list(kwargs.keys())}")
|
217 |
|
218 |
# Extrair o prompt das mensagens se estiverem disponíveis
|
219 |
if prompt is None and 'messages' in kwargs and kwargs['messages']:
|
|
|
222 |
for message in messages:
|
223 |
if hasattr(message, 'role') and message.role == 'user' and hasattr(message, 'content'):
|
224 |
prompt = message.content
|
225 |
+
logging.info(f"[{self.model_name}] Extracted prompt from user message: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
226 |
break
|
227 |
|
228 |
# Verificar se o prompt está em kwargs['input']
|
229 |
if prompt is None:
|
230 |
if 'input' in kwargs:
|
231 |
prompt = kwargs.get('input')
|
232 |
+
logging.info(f"[{self.model_name}] Found prompt in kwargs['input']: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
233 |
|
234 |
+
logging.info(f"[{self.model_name}] response called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
235 |
|
236 |
if not prompt or not isinstance(prompt, str) or not prompt.strip():
|
237 |
+
logging.warning(f"[{self.model_name}] Empty or invalid prompt in response")
|
238 |
return Response("No input provided. Please provide a valid prompt.")
|
239 |
|
240 |
content = self.invoke(prompt, **kwargs)
|
241 |
return content if isinstance(content, Response) else Response(content)
|
242 |
except Exception as e:
|
243 |
+
logging.error(f"[{self.model_name}] Error in response: {str(e)}")
|
244 |
return Response(f"Error in response: {str(e)}")
|
245 |
|
246 |
def response_stream(self, prompt=None, **kwargs):
|
247 |
"""Synchronous streaming response method - required abstract method"""
|
248 |
try:
|
249 |
# Log detalhado de todos os argumentos
|
250 |
+
logging.info(f"[{self.model_name}] response_stream args: prompt={prompt}, kwargs keys={list(kwargs.keys())}")
|
251 |
|
252 |
# Extrair o prompt das mensagens se estiverem disponíveis
|
253 |
if prompt is None and 'messages' in kwargs and kwargs['messages']:
|
|
|
256 |
for message in messages:
|
257 |
if hasattr(message, 'role') and message.role == 'user' and hasattr(message, 'content'):
|
258 |
prompt = message.content
|
259 |
+
logging.info(f"[{self.model_name}] Extracted prompt from user message: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
260 |
break
|
261 |
|
262 |
# Verificar se o prompt está em kwargs['input']
|
263 |
if prompt is None:
|
264 |
if 'input' in kwargs:
|
265 |
prompt = kwargs.get('input')
|
266 |
+
logging.info(f"[{self.model_name}] Found prompt in kwargs['input']: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}")
|
267 |
|
268 |
+
logging.info(f"[{self.model_name}] response_stream called with prompt: {prompt[:100] if prompt and isinstance(prompt, str) else 'None'}...")
|
269 |
|
270 |
if not prompt or not isinstance(prompt, str) or not prompt.strip():
|
271 |
+
logging.warning(f"[{self.model_name}] Empty or invalid prompt in response_stream")
|
272 |
yield Response("No input provided. Please provide a valid prompt.")
|
273 |
return
|
274 |
|
275 |
for chunk in self.invoke_stream(prompt, **kwargs):
|
276 |
yield chunk if isinstance(chunk, Response) else Response(chunk)
|
277 |
except Exception as e:
|
278 |
+
logging.error(f"[{self.model_name}] Error in response_stream: {str(e)}")
|
279 |
yield Response(f"Error in response_stream: {str(e)}")
|
280 |
|
281 |
def generate(self, prompt: str, **kwargs):
|
|
|
297 |
|
298 |
return decoded_output
|
299 |
except Exception as e:
|
300 |
+
logging.error(f"[{self.model_name}] Error in generate method: {str(e)}")
|
301 |
if hasattr(e, 'args') and len(e.args) > 0:
|
302 |
error_message = e.args[0]
|
303 |
else:
|
|
|
306 |
|
307 |
class ModelHandler:
|
308 |
"""
|
309 |
+
Classe para gerenciar múltiplos modelos e gerar respostas.
|
310 |
"""
|
311 |
|
312 |
def __init__(self):
|
313 |
"""
|
314 |
+
Inicializa o ModelHandler com múltiplos modelos.
|
315 |
"""
|
316 |
self.translator = None
|
317 |
self.researcher = None
|
318 |
self.presenter = None
|
319 |
self.force_default_response = False
|
320 |
+
self.models = {}
|
321 |
|
322 |
# Inicializar modelos
|
323 |
self._load_models()
|
|
|
381 |
- Recent developments or research
|
382 |
- Real-world implications and applications
|
383 |
|
384 |
+
Search for relevant academic papers and medical resources using the provided tools.
|
385 |
+
Make sure to include findings from recent research in your response.
|
386 |
+
Use ArxivTools and PubmedTools to find the most relevant and up-to-date information.
|
387 |
+
|
388 |
Aim to write at least 4-5 paragraphs with detailed information.
|
389 |
Be thorough and informative, covering all important aspects of the topic.
|
390 |
Use clear and accessible language suitable for a general audience.
|
|
|
413 |
else:
|
414 |
logging.error(f"Unknown prompt type: {prompt_type}")
|
415 |
return f"Unknown prompt type: {prompt_type}"
|
416 |
+
|
417 |
+
@staticmethod
|
418 |
+
def _load_specific_model(model_name: str, purpose: str) -> Tuple[Optional[Any], Optional[Any]]:
|
419 |
+
"""
|
420 |
+
Load a specific model with retry logic
|
421 |
+
|
422 |
+
Args:
|
423 |
+
model_name: The name of the model to load
|
424 |
+
purpose: What the model will be used for (logging purposes)
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
A tuple of (model, tokenizer) or (None, None) if loading fails
|
428 |
+
"""
|
429 |
+
try:
|
430 |
+
logging.info(f"Attempting to load {purpose} model: {model_name}")
|
431 |
+
|
432 |
+
# Criar diretório de cache se não existir
|
433 |
+
cache_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "model_cache")
|
434 |
+
os.makedirs(cache_dir, exist_ok=True)
|
435 |
+
|
436 |
+
# Carregar modelo e tokenizer
|
437 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
438 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, cache_dir=cache_dir)
|
439 |
+
|
440 |
+
logging.info(f"Successfully loaded {purpose} model: {model_name}")
|
441 |
+
return model, tokenizer
|
442 |
+
except Exception as e:
|
443 |
+
logging.error(f"Error loading {purpose} model {model_name}: {str(e)}")
|
444 |
+
return None, None
|
445 |
|
446 |
@staticmethod
|
447 |
@st.cache_resource
|
448 |
+
def _load_fallback_model():
|
449 |
+
"""Load a fallback model"""
|
450 |
# Define retry decorator for model loading
|
451 |
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
452 |
def load_with_retry(model_name):
|
453 |
try:
|
454 |
+
logging.info(f"Attempting to load fallback model from {model_name}")
|
455 |
|
456 |
# Criar diretório de cache se não existir
|
457 |
cache_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "model_cache")
|
|
|
461 |
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
462 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, cache_dir=cache_dir)
|
463 |
|
464 |
+
logging.info(f"Successfully loaded fallback model from {model_name}")
|
465 |
return model, tokenizer
|
466 |
except Exception as e:
|
467 |
+
logging.error(f"Error loading fallback model {model_name}: {str(e)}")
|
468 |
raise
|
469 |
|
470 |
# Lista de modelos para tentar, em ordem de preferência
|
|
|
475 |
try:
|
476 |
return load_with_retry(model_name)
|
477 |
except Exception as e:
|
478 |
+
logging.error(f"Failed to load fallback model {model_name}: {str(e)}")
|
479 |
continue
|
480 |
|
481 |
# Se todos os modelos falharem, retornar None
|
482 |
+
logging.error("All fallback models failed to load")
|
483 |
return None, None
|
484 |
|
485 |
+
def _get_default_research_content(self, topic):
|
486 |
+
"""
|
487 |
+
Gera conteúdo de pesquisa padrão quando não for possível gerar com o modelo.
|
488 |
+
|
489 |
+
Args:
|
490 |
+
topic: O tópico da pesquisa
|
491 |
+
|
492 |
+
Returns:
|
493 |
+
Conteúdo de pesquisa padrão
|
494 |
+
"""
|
495 |
+
return f"""
|
496 |
+
# Research on {topic}
|
497 |
+
|
498 |
+
## Definition and Key Characteristics
|
499 |
+
|
500 |
+
{topic} is a subject of significant interest in various fields. While detailed information is currently limited in our system, we understand that it encompasses several key characteristics and has important implications.
|
501 |
+
|
502 |
+
## Current Understanding
|
503 |
+
|
504 |
+
Research on {topic} continues to evolve, with new findings emerging regularly. The current understanding suggests multiple dimensions to consider when approaching this topic.
|
505 |
+
|
506 |
+
## Applications and Implications
|
507 |
+
|
508 |
+
The study of {topic} has several real-world applications and implications that affect various sectors including healthcare, education, and social services.
|
509 |
+
|
510 |
+
## Conclusion
|
511 |
+
|
512 |
+
While our current information on {topic} is limited, it represents an important area for continued research and understanding. For more detailed information, consulting specialized literature and experts is recommended.
|
513 |
+
"""
|
514 |
+
|
515 |
def _load_models(self):
|
516 |
+
"""Carrega múltiplos modelos para diferentes propósitos"""
|
517 |
+
# Carregar modelo de tradução
|
518 |
+
translator_model, translator_tokenizer = self._load_specific_model(
|
519 |
+
MODEL_CONFIG["translator"]["primary"], "translator"
|
520 |
+
)
|
521 |
|
522 |
+
# Carregar modelo de pesquisa
|
523 |
+
researcher_model, researcher_tokenizer = self._load_specific_model(
|
524 |
+
MODEL_CONFIG["researcher"]["primary"], "researcher"
|
525 |
+
)
|
526 |
+
|
527 |
+
# Carregar modelo de apresentação
|
528 |
+
presenter_model, presenter_tokenizer = self._load_specific_model(
|
529 |
+
MODEL_CONFIG["presenter"]["primary"], "presenter"
|
530 |
+
)
|
531 |
+
|
532 |
+
# Carregar modelo de fallback
|
533 |
+
fallback_model, fallback_tokenizer = self._load_fallback_model()
|
534 |
+
|
535 |
+
# Criar modelos locais
|
536 |
+
if translator_model and translator_tokenizer:
|
537 |
+
self.models["translator"] = LocalHuggingFaceModel(
|
538 |
+
translator_model,
|
539 |
+
translator_tokenizer,
|
540 |
+
model_id=MODEL_CONFIG["translator"]["primary"]
|
541 |
+
)
|
542 |
+
else:
|
543 |
+
# Tentar carregar o modelo fallback para tradutor
|
544 |
+
fallback_translator, fallback_translator_tokenizer = self._load_specific_model(
|
545 |
+
MODEL_CONFIG["translator"]["fallback"], "translator fallback"
|
546 |
+
)
|
547 |
+
|
548 |
+
if fallback_translator and fallback_translator_tokenizer:
|
549 |
+
self.models["translator"] = LocalHuggingFaceModel(
|
550 |
+
fallback_translator,
|
551 |
+
fallback_translator_tokenizer,
|
552 |
+
model_id=MODEL_CONFIG["translator"]["fallback"]
|
553 |
+
)
|
554 |
+
else:
|
555 |
+
self.models["translator"] = LocalHuggingFaceModel(
|
556 |
+
fallback_model,
|
557 |
+
fallback_tokenizer,
|
558 |
+
model_id="fallback-model"
|
559 |
+
)
|
560 |
+
|
561 |
+
if researcher_model and researcher_tokenizer:
|
562 |
+
self.models["researcher"] = LocalHuggingFaceModel(
|
563 |
+
researcher_model,
|
564 |
+
researcher_tokenizer,
|
565 |
+
model_id=MODEL_CONFIG["researcher"]["primary"]
|
566 |
+
)
|
567 |
+
else:
|
568 |
+
# Tentar carregar o modelo fallback para pesquisador
|
569 |
+
fallback_researcher, fallback_researcher_tokenizer = self._load_specific_model(
|
570 |
+
MODEL_CONFIG["researcher"]["fallback"], "researcher fallback"
|
571 |
+
)
|
572 |
+
|
573 |
+
if fallback_researcher and fallback_researcher_tokenizer:
|
574 |
+
self.models["researcher"] = LocalHuggingFaceModel(
|
575 |
+
fallback_researcher,
|
576 |
+
fallback_researcher_tokenizer,
|
577 |
+
model_id=MODEL_CONFIG["researcher"]["fallback"]
|
578 |
+
)
|
579 |
+
else:
|
580 |
+
self.models["researcher"] = LocalHuggingFaceModel(
|
581 |
+
fallback_model,
|
582 |
+
fallback_tokenizer,
|
583 |
+
model_id="fallback-model"
|
584 |
+
)
|
585 |
+
|
586 |
+
if presenter_model and presenter_tokenizer:
|
587 |
+
self.models["presenter"] = LocalHuggingFaceModel(
|
588 |
+
presenter_model,
|
589 |
+
presenter_tokenizer,
|
590 |
+
model_id=MODEL_CONFIG["presenter"]["primary"]
|
591 |
+
)
|
592 |
+
else:
|
593 |
+
# Tentar carregar o modelo fallback para apresentador
|
594 |
+
fallback_presenter, fallback_presenter_tokenizer = self._load_specific_model(
|
595 |
+
MODEL_CONFIG["presenter"]["fallback"], "presenter fallback"
|
596 |
+
)
|
597 |
+
|
598 |
+
if fallback_presenter and fallback_presenter_tokenizer:
|
599 |
+
self.models["presenter"] = LocalHuggingFaceModel(
|
600 |
+
fallback_presenter,
|
601 |
+
fallback_presenter_tokenizer,
|
602 |
+
model_id=MODEL_CONFIG["presenter"]["fallback"]
|
603 |
+
)
|
604 |
+
else:
|
605 |
+
self.models["presenter"] = LocalHuggingFaceModel(
|
606 |
+
fallback_model,
|
607 |
+
fallback_tokenizer,
|
608 |
+
model_id="fallback-model"
|
609 |
+
)
|
610 |
+
|
611 |
+
# Configurar agentes com seus respectivos modelos
|
612 |
self.translator = Agent(
|
613 |
name="Translator",
|
614 |
role="You will translate the query to English",
|
615 |
+
model=self.models["translator"],
|
616 |
goal="Translate to English",
|
617 |
instructions=[
|
618 |
+
"Translate the query to English",
|
619 |
+
"Preserve all key information from the original query",
|
620 |
+
"Return only the translated text without additional comments"
|
621 |
]
|
622 |
)
|
623 |
|
624 |
+
# Configurar o agente de pesquisa com as ferramentas ArxivTools e PubmedTools
|
625 |
self.researcher = Agent(
|
626 |
name="Researcher",
|
627 |
role="You are a research scholar who specializes in autism research.",
|
628 |
+
model=self.models["researcher"],
|
629 |
instructions=[
|
630 |
"You need to understand the context of the question to provide the best answer.",
|
631 |
"Be precise and provide detailed information.",
|
632 |
"You must create an accessible explanation.",
|
633 |
"The content must be for people without autism knowledge.",
|
634 |
"Focus on providing comprehensive information about the topic.",
|
635 |
+
"Include definition, characteristics, causes, and current understanding.",
|
636 |
+
"ALWAYS use the provided tools (ArxivTools and PubmedTools) to search for relevant information.",
|
637 |
+
"Cite specific papers and studies in your response when appropriate.",
|
638 |
+
"When using tools, specify the search query clearly in your thoughts before making the call."
|
639 |
],
|
640 |
tools=[
|
641 |
+
ArxivTools(), # Usar ferramentas ArxivTools
|
642 |
+
PubmedTools() # Usar ferramentas PubmedTools
|
643 |
+
],
|
644 |
+
verbose=True # Ativar modo verbose para depuração
|
645 |
)
|
646 |
|
647 |
self.presenter = Agent(
|
648 |
name="Presenter",
|
649 |
role="You are a professional researcher who presents the results of the research.",
|
650 |
+
model=self.models["presenter"],
|
651 |
instructions=[
|
652 |
"You are multilingual",
|
653 |
"You must present the results in a clear and engaging manner.",
|
|
|
655 |
"Provide simple explanations of complex concepts.",
|
656 |
"Include a brief conclusion or summary.",
|
657 |
"Add emojis to make the presentation more interactive.",
|
658 |
+
"Translate the answer to Portuguese.",
|
659 |
+
"Maintain any citations or references from the research in your presentation.",
|
660 |
+
"Do not add fictional information not present in the research."
|
661 |
]
|
662 |
)
|
663 |
+
|
664 |
+
logging.info("Models and agents loaded successfully.")
|
665 |
|
666 |
+
async def _run_with_tools(self, agent, prompt, max_steps=5):
|
667 |
+
"""
|
668 |
+
Executa um agente com suporte a ferramentas e gerencia a execução.
|
669 |
|
670 |
+
Args:
|
671 |
+
agent: O agente a ser executado
|
672 |
+
prompt: O prompt a ser enviado para o agente
|
673 |
+
max_steps: Número máximo de passos para execução
|
674 |
+
|
675 |
+
Returns:
|
676 |
+
O resultado da execução do agente
|
677 |
+
"""
|
678 |
+
try:
|
679 |
+
logging.info(f"Running agent {agent.name} with tools")
|
680 |
+
result = await agent.arun(prompt, max_steps=max_steps)
|
681 |
+
logging.info(f"Agent {agent.name} execution complete")
|
682 |
+
return result
|
683 |
+
except Exception as e:
|
684 |
+
logging.error(f"Error during agent {agent.name} execution: {str(e)}")
|
685 |
+
return f"Error during {agent.name} execution: {str(e)}"
|
686 |
|
687 |
+
async def generate_answer_async(self, query: str) -> str:
|
688 |
"""
|
689 |
+
Gera uma resposta baseada na consulta do usuário usando execução assíncrona.
|
690 |
|
691 |
Args:
|
692 |
query: A consulta do usuário
|
|
|
711 |
logging.info(f"Translation prompt: {translation_prompt}")
|
712 |
|
713 |
try:
|
714 |
+
translation_result = await self.translator.arun(translation_prompt)
|
715 |
logging.info(f"Translation result type: {type(translation_result)}")
|
716 |
|
717 |
# Extrair o conteúdo da resposta
|
|
|
722 |
logging.error("Empty translation result")
|
723 |
return "Desculpe, não foi possível processar sua consulta. Por favor, tente novamente com uma pergunta diferente."
|
724 |
|
725 |
+
# Realizar a pesquisa com ferramentas
|
|
|
726 |
research_prompt = self._format_prompt("research", translation_content)
|
727 |
logging.info(f"Research prompt: {research_prompt}")
|
728 |
|
729 |
+
research_result = await self._run_with_tools(self.researcher, research_prompt)
|
730 |
logging.info(f"Research result type: {type(research_result)}")
|
731 |
|
732 |
# Extrair o conteúdo da pesquisa
|
|
|
742 |
# Tentar novamente com um prompt mais específico
|
743 |
enhanced_prompt = f"""Task: Detailed Research
|
744 |
|
745 |
+
Instructions:
|
746 |
+
Provide a comprehensive explanation about '{translation_content}'.
|
747 |
+
Include definition, characteristics, causes, and current understanding.
|
748 |
+
Write at least 4-5 paragraphs with detailed information.
|
749 |
+
Be thorough and informative, covering all important aspects of the topic.
|
750 |
+
Use clear and accessible language suitable for a general audience.
|
751 |
|
752 |
+
Output:"""
|
753 |
logging.info(f"Enhanced research prompt: {enhanced_prompt}")
|
754 |
+
research_result = await self._run_with_tools(self.researcher, enhanced_prompt)
|
755 |
research_content = self._extract_content(research_result)
|
756 |
research_length = len(research_content.strip()) if research_content and isinstance(research_content, str) else 0
|
757 |
logging.info(f"Enhanced research content: {research_content}")
|
|
|
763 |
logging.info("Using default research content")
|
764 |
research_content = self._get_default_research_content(translation_content)
|
765 |
|
766 |
+
# Gerar a apresentação
|
767 |
presentation_prompt = self._format_prompt("presentation", research_content)
|
768 |
logging.info(f"Presentation prompt: {presentation_prompt}")
|
769 |
|
770 |
+
presentation_result = await self.presenter.arun(presentation_prompt)
|
771 |
logging.info(f"Presentation type: {type(presentation_result)}")
|
772 |
|
773 |
presentation_content = self._extract_content(presentation_result)
|
|
|
787 |
return f"Desculpe, ocorreu um erro ao processar sua consulta: {str(e)}. Por favor, tente novamente mais tarde."
|
788 |
|
789 |
except Exception as e:
|
790 |
+
logging.error(f"Unexpected error in generate_answer_async: {str(e)}")
|
791 |
+
return "Desculpe, ocorreu um erro inesperado. Por favor, tente novamente mais tarde."
|
|