Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from peft import PeftModel, PeftConfig
|
4 |
-
from transformers import AutoTokenizer
|
|
|
|
|
5 |
|
6 |
ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-70m-deduped-v0", torch_dtype=torch.bfloat16)
|
7 |
peft_model_id = "w601sxs/pythia-70m-instruct-orca-chkpt-64000"
|
@@ -13,12 +15,12 @@ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
|
13 |
model.eval()
|
14 |
|
15 |
def predict(text):
|
16 |
-
inputs = tokenizer(
|
17 |
with torch.no_grad():
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
return out_text
|
22 |
|
23 |
|
24 |
demo = gr.Interface(
|
@@ -27,6 +29,4 @@ demo = gr.Interface(
|
|
27 |
outputs='text',
|
28 |
)
|
29 |
|
30 |
-
demo.launch()
|
31 |
-
|
32 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from peft import PeftModel, PeftConfig, LoraConfig
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from datasets import load_dataset
|
6 |
+
from trl import SFTTrainer
|
7 |
|
8 |
ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-70m-deduped-v0", torch_dtype=torch.bfloat16)
|
9 |
peft_model_id = "w601sxs/pythia-70m-instruct-orca-chkpt-64000"
|
|
|
15 |
model.eval()
|
16 |
|
17 |
def predict(text):
|
18 |
+
inputs = tokenizer(text, return_tensors="pt")
|
19 |
with torch.no_grad():
|
20 |
+
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
|
21 |
+
out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
|
22 |
|
23 |
+
return out_text.split(text)[-1]
|
24 |
|
25 |
|
26 |
demo = gr.Interface(
|
|
|
29 |
outputs='text',
|
30 |
)
|
31 |
|
32 |
+
demo.launch()
|
|
|
|