Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,32 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
gr.Interface.load("models/w601sxs/pythia-70m-instruct-orca-chkpt-64000").launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from peft import PeftModel, PeftConfig
|
| 4 |
+
from transformers import AutoTokenizer
|
| 5 |
+
|
| 6 |
+
ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-70m-deduped-v0", torch_dtype=torch.bfloat16)
|
| 7 |
+
peft_model_id = "w601sxs/pythia-70m-instruct-orca-chkpt-64000"
|
| 8 |
+
|
| 9 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
| 10 |
+
model = PeftModel.from_pretrained(ref_model, peft_model_id)
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
| 12 |
+
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
def predict(text):
|
| 16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
|
| 19 |
+
out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])
|
| 20 |
+
|
| 21 |
+
return out_text
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
demo = gr.Interface(
|
| 25 |
+
fn=predict,
|
| 26 |
+
inputs='text',
|
| 27 |
+
outputs='text',
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
demo.launch()
|
| 31 |
+
|
| 32 |
|
|
|