Spaces:
Runtime error
Runtime error
import copy | |
import math | |
from collections import OrderedDict | |
from typing import Tuple, Union | |
import clip | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from timm.models.layers import trunc_normal_ | |
from torch import nn | |
from torch.utils.checkpoint import checkpoint_sequential | |
def drop_path(x, drop_prob: float = 0.0, training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
# orig_type = x.dtype | |
# ret = super().forward(x.type(torch.float32)) | |
# return ret.type(orig_type) | |
return super().forward(x) | |
class QuickGELU(nn.Module): | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class ResidualAttentionBlock(nn.Module): | |
def __init__( | |
self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, | |
): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(d_model, n_head,) | |
self.ln_1 = LayerNorm(d_model) | |
self.mlp = nn.Sequential( | |
OrderedDict( | |
[ | |
("c_fc", nn.Linear(d_model, d_model * 4)), | |
("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 4, d_model)), | |
] | |
) | |
) | |
self.ln_2 = LayerNorm(d_model) | |
self.attn_mask = attn_mask | |
def attention(self, x: torch.Tensor): | |
self.attn_mask = ( | |
self.attn_mask.to(dtype=x.dtype, device=x.device) | |
if self.attn_mask is not None | |
else None | |
) | |
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
def forward(self, x: torch.Tensor): | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class Transformer(nn.Module): | |
def __init__( | |
self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None | |
): | |
super().__init__() | |
self.width = width | |
self.layers = layers | |
self.resblocks = nn.Sequential( | |
*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)] | |
) | |
def forward(self, x: torch.Tensor): | |
return self.resblocks(x) | |
class VisionTransformer(nn.Module): | |
def __init__( | |
self, | |
input_resolution: int, | |
patch_size: int, | |
width: int, | |
layers: int, | |
heads: int, | |
output_dim: int, | |
): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.output_dim = output_dim | |
self.conv1 = nn.Conv2d( | |
in_channels=3, | |
out_channels=width, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=False, | |
) | |
scale = width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
self.positional_embedding = nn.Parameter( | |
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width) | |
) | |
self.ln_pre = LayerNorm(width) | |
self.transformer = Transformer(width, layers, heads) | |
self.ln_post = LayerNorm(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |
def forward(self, x: torch.Tensor): | |
x = self.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat( | |
[ | |
self.class_embedding.to(x.dtype) | |
+ torch.zeros( | |
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device | |
), | |
x, | |
], | |
dim=1, | |
) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.positional_embedding.to(x.dtype) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_post(x[:, 0, :]) | |
if self.proj is not None: | |
x = x @ self.proj | |
return x | |
class CLIP(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int, | |
# vision | |
image_resolution: int, | |
vision_layers: Union[Tuple[int, int, int, int], int], | |
vision_width: int, | |
vision_patch_size: int, | |
# text | |
context_length: int, | |
vocab_size: int, | |
transformer_width: int, | |
transformer_heads: int, | |
transformer_layers: int, | |
): | |
super().__init__() | |
self.context_length = context_length | |
# vision_heads = vision_width // 64 | |
# self.visual = VisionTransformer( | |
# input_resolution=image_resolution, | |
# patch_size=vision_patch_size, | |
# width=vision_width, | |
# layers=vision_layers, | |
# heads=vision_heads, | |
# output_dim=embed_dim | |
# ) | |
# self.transformer = Transformer( | |
# width=transformer_width, | |
# layers=transformer_layers, | |
# heads=transformer_heads, | |
# attn_mask=self.build_attention_mask() | |
# ) | |
# self.vocab_size = vocab_size | |
# self.token_embedding = nn.Embedding(vocab_size, transformer_width) | |
# self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) | |
# self.ln_final = LayerNorm(transformer_width) | |
# self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) | |
# self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
# self.initialize_parameters() | |
def initialize_parameters(self): | |
nn.init.normal_(self.token_embedding.weight, std=0.02) | |
nn.init.normal_(self.positional_embedding, std=0.01) | |
proj_std = (self.transformer.width ** -0.5) * ( | |
(2 * self.transformer.layers) ** -0.5 | |
) | |
attn_std = self.transformer.width ** -0.5 | |
fc_std = (2 * self.transformer.width) ** -0.5 | |
for block in self.transformer.resblocks: | |
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) | |
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) | |
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) | |
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | |
if self.text_projection is not None: | |
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) | |
def build_attention_mask(self): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.empty(self.context_length, self.context_length) | |
mask.fill_(float("-inf")) | |
mask.triu_(1) # zero out the lower diagonal | |
return mask | |
def dtype(self): | |
return self.visual.conv1.weight.dtype | |
def encode_image(self, image): | |
return self.visual(image.type(self.dtype)) | |
def encode_text(self, text): | |
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding.type(self.dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x).type(self.dtype) | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
return x | |
def forward(self, image, text): | |
image_features = self.encode_image(image) | |
text_features = self.encode_text(text) | |
# normalized features | |
image_features = image_features / image_features.norm(dim=1, keepdim=True) | |
text_features = text_features / text_features.norm(dim=1, keepdim=True) | |
# cosine similarity as logits | |
logit_scale = self.logit_scale.exp() | |
logits_per_image = logit_scale * image_features @ text_features.t() | |
logits_per_text = logits_per_image.t() | |
# shape = [global_batch_size, global_batch_size] | |
return logits_per_image, logits_per_text | |
class CrossFramelAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
n_head: int, | |
attn_mask: torch.Tensor = None, | |
droppath=0.0, | |
T=0, | |
): | |
super().__init__() | |
self.T = T | |
self.message_fc = nn.Linear(d_model, d_model) | |
self.message_ln = LayerNorm(d_model) | |
self.message_attn = nn.MultiheadAttention(d_model, n_head,) | |
self.attn = nn.MultiheadAttention(d_model, n_head,) | |
self.ln_1 = LayerNorm(d_model) | |
self.drop_path = DropPath(droppath) if droppath > 0.0 else nn.Identity() | |
self.mlp = nn.Sequential( | |
OrderedDict( | |
[ | |
("c_fc", nn.Linear(d_model, d_model * 4)), | |
("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 4, d_model)), | |
] | |
) | |
) | |
self.ln_2 = LayerNorm(d_model) | |
self.attn_mask = attn_mask | |
def attention(self, x: torch.Tensor): | |
self.attn_mask = ( | |
self.attn_mask.to(dtype=x.dtype, device=x.device) | |
if self.attn_mask is not None | |
else None | |
) | |
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
def forward(self, x): | |
l, bt, d = x.size() | |
b = bt // self.T | |
x = x.view(l, b, self.T, d) | |
msg_token = self.message_fc(x[0, :, :, :]) | |
msg_token = msg_token.view(b, self.T, 1, d) | |
msg_token = msg_token.permute(1, 2, 0, 3).view(self.T, b, d) | |
msg_token = msg_token + self.drop_path( | |
self.message_attn( | |
self.message_ln(msg_token), | |
self.message_ln(msg_token), | |
self.message_ln(msg_token), | |
need_weights=False, | |
)[0] | |
) | |
msg_token = msg_token.view(self.T, 1, b, d).permute(1, 2, 0, 3) | |
x = torch.cat([x, msg_token], dim=0) | |
x = x.view(l + 1, -1, d) | |
x = x + self.drop_path(self.attention(self.ln_1(x))) | |
x = x[:l, :, :] | |
x = x + self.drop_path(self.mlp(self.ln_2(x))) | |
return x | |
class Transformer(nn.Module): | |
def __init__( | |
self, | |
width: int, | |
layers: int, | |
heads: int, | |
attn_mask: torch.Tensor = None, | |
droppath=None, | |
use_checkpoint=False, | |
T=8, | |
): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
if droppath is None: | |
droppath = [0.0 for i in range(layers)] | |
self.width = width | |
self.layers = layers | |
self.resblocks = nn.Sequential( | |
*[ | |
CrossFramelAttentionBlock(width, heads, attn_mask, droppath[i], T) | |
for i in range(layers) | |
] | |
) | |
def forward(self, x: torch.Tensor): | |
if not self.use_checkpoint: | |
return self.resblocks(x) | |
else: | |
return checkpoint_sequential(self.resblocks, 3, x) | |
class CrossFrameCommunicationTransformer(nn.Module): | |
def __init__( | |
self, | |
input_resolution: int, | |
patch_size: int, | |
width: int, | |
layers: int, | |
heads: int, | |
output_dim: int, | |
droppath=None, | |
T=8, | |
use_checkpoint=False, | |
): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.output_dim = output_dim | |
self.conv1 = nn.Conv2d( | |
in_channels=3, | |
out_channels=width, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=False, | |
) | |
scale = width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
self.positional_embedding = nn.Parameter( | |
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width) | |
) | |
self.ln_pre = LayerNorm(width) | |
## Attention Blocks | |
self.transformer = Transformer( | |
width, layers, heads, droppath=droppath, use_checkpoint=use_checkpoint, T=T, | |
) | |
self.ln_post = LayerNorm(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |
def init_weights(self): | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x: torch.Tensor): | |
x = self.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat( | |
[ | |
self.class_embedding.to(x.dtype) | |
+ torch.zeros( | |
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device | |
), | |
x, | |
], | |
dim=1, | |
) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.positional_embedding.to(x.dtype) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) | |
cls_x = self.ln_post(x[:, 0, :]) | |
if self.proj is not None: | |
cls_x = cls_x @ self.proj | |
return cls_x, x[:, 1:, :] | |
class MulitHeadAttention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.q_proj = nn.Linear(dim, dim, bias=qkv_bias) | |
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias) | |
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, q, k, v): | |
B, N, C = q.shape | |
B, M, C = k.shape | |
q = ( | |
self.q_proj(q) | |
.reshape(B, N, self.num_heads, C // self.num_heads) | |
.permute(0, 2, 1, 3) | |
) | |
k = ( | |
self.k_proj(k) | |
.reshape(B, M, self.num_heads, C // self.num_heads) | |
.permute(0, 2, 1, 3) | |
) | |
v = ( | |
self.v_proj(v) | |
.reshape(B, M, self.num_heads, C // self.num_heads) | |
.permute(0, 2, 1, 3) | |
) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class PromptGeneratorLayer(nn.Module): | |
def __init__( | |
self, d_model, nhead, dropout=0.0, | |
): | |
super().__init__() | |
self.cross_attn = MulitHeadAttention(d_model, nhead, proj_drop=dropout) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.mlp = nn.Sequential( | |
nn.Linear(d_model, d_model * 4), | |
QuickGELU(), | |
nn.Dropout(dropout), | |
nn.Linear(d_model * 4, d_model), | |
) | |
def forward(self, x, visual): | |
q = k = v = self.norm1(x) | |
x = x + self.cross_attn(q, visual, visual) | |
x = x + self.dropout(self.mlp(self.norm3(x))) | |
return x | |
class VideoSpecificPrompt(nn.Module): | |
def __init__( | |
self, layers=2, embed_dim=512, alpha=0.1, | |
): | |
super().__init__() | |
self.norm = nn.LayerNorm(embed_dim) | |
self.decoder = nn.ModuleList( | |
[PromptGeneratorLayer(embed_dim, embed_dim // 64) for _ in range(layers)] | |
) | |
self.alpha = nn.Parameter(torch.ones(embed_dim) * alpha) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, text, visual): | |
B, N, C = visual.shape | |
visual = self.norm(visual) | |
for layer in self.decoder: | |
text = layer(text, visual) | |
from collections import OrderedDict | |
from timm.models.layers import trunc_normal_ | |
class ResidualAttentionBlock(nn.Module): | |
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_1 = nn.LayerNorm(d_model) | |
self.mlp = nn.Sequential( | |
OrderedDict( | |
[ | |
("c_fc", nn.Linear(d_model, d_model * 4)), | |
("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 4, d_model)), | |
] | |
) | |
) | |
self.ln_2 = nn.LayerNorm(d_model) | |
self.attn_mask = attn_mask | |
def attention(self, x: torch.Tensor): | |
self.attn_mask = ( | |
self.attn_mask.to(dtype=x.dtype, device=x.device) | |
if self.attn_mask is not None | |
else None | |
) | |
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
def forward(self, x: torch.Tensor): | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class MultiframeIntegrationTransformer(nn.Module): | |
def __init__( | |
self, T, embed_dim=512, layers=1, | |
): | |
super().__init__() | |
self.T = T | |
transformer_heads = embed_dim // 64 | |
self.positional_embedding = nn.Parameter(torch.empty(1, T, embed_dim)) | |
trunc_normal_(self.positional_embedding, std=0.02) | |
self.resblocks = nn.Sequential( | |
*[ | |
ResidualAttentionBlock(d_model=embed_dim, n_head=transformer_heads) | |
for _ in range(layers) | |
] | |
) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Linear,)): | |
trunc_normal_(m.weight, std=0.02) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.zeros_(m.bias) | |
nn.init.ones_(m.weight) | |
def forward(self, x): | |
ori_x = x | |
x = x + self.positional_embedding | |
x = x.permute(1, 0, 2) | |
x = self.resblocks(x) | |
x = x.permute(1, 0, 2) | |
x = x.type(ori_x.dtype) + ori_x | |
return x.mean(dim=1, keepdim=False) | |
class XCLIP(CLIP): | |
def __init__( | |
self, | |
embed_dim: int, | |
# vision | |
image_resolution: int, | |
vision_layers: Union[Tuple[int, int, int, int], int], | |
vision_width: int, | |
vision_patch_size: int, | |
# text | |
context_length: int, | |
vocab_size: int, | |
transformer_width: int, | |
transformer_heads: int, | |
transformer_layers: int, | |
# video | |
T=8, | |
droppath=0.0, | |
mit_layers=1, | |
# prompt | |
prompts_alpha=1e-4, | |
prompts_layers=1, | |
# other | |
use_cache=True, | |
use_checkpoint=False, | |
): | |
super().__init__( | |
embed_dim, | |
image_resolution, | |
vision_layers, | |
vision_width, | |
vision_patch_size, | |
context_length, | |
vocab_size, | |
transformer_width, | |
transformer_heads, | |
transformer_layers, | |
) | |
self.prompts_generator = VideoSpecificPrompt( | |
layers=prompts_layers, embed_dim=embed_dim, alpha=prompts_alpha, | |
) | |
self.use_cache = use_cache | |
self.mit = MultiframeIntegrationTransformer( | |
T=T, embed_dim=embed_dim, layers=mit_layers, | |
) | |
dpr = ( | |
[x.item() for x in torch.linspace(0, droppath, vision_layers)] | |
if droppath > 0.0 | |
else None | |
) | |
vision_heads = vision_width // 64 | |
self.visual = CrossFrameCommunicationTransformer( | |
input_resolution=image_resolution, | |
patch_size=vision_patch_size, | |
width=vision_width, | |
layers=vision_layers, | |
heads=vision_heads, | |
output_dim=embed_dim, | |
droppath=dpr, | |
T=T, | |
use_checkpoint=use_checkpoint, | |
) | |
self.transformer = Transformer( | |
width=transformer_width, | |
layers=transformer_layers, | |
heads=transformer_heads, | |
attn_mask=self.build_attention_mask(), | |
) | |
self.vocab_size = vocab_size | |
self.token_embedding = nn.Embedding(vocab_size, transformer_width) | |
self.positional_embedding = nn.Parameter( | |
torch.empty(self.context_length, transformer_width) | |
) | |
self.ln_final = LayerNorm(transformer_width) | |
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
self.cache_text_features = None | |
self.prompts_visual_ln = LayerNorm(vision_width) | |
self.prompts_visual_proj = nn.Parameter(torch.randn(vision_width, embed_dim)) | |
self.initialize_parameters() | |
def no_weight_decay_keywords(self): | |
return {"positional_embedding"} | |
def encode_image(self, image): | |
return self.visual(image) | |
def encode_text(self, text): | |
x = self.token_embedding(text) | |
eos_indx = text.argmax(dim=-1) | |
K, N1, C = x.shape | |
x = x + self.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x) | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = x[torch.arange(x.shape[0]), eos_indx] @ self.text_projection | |
x = x.reshape(K, -1) | |
return x | |
def encode_video(self, image): | |
b, t, c, h, w = image.size() | |
image = image.reshape(-1, c, h, w) | |
cls_features, img_features = self.encode_image(image) | |
img_features = self.prompts_visual_ln(img_features) | |
img_features = img_features @ self.prompts_visual_proj | |
cls_features = cls_features.view(b, t, -1) | |
img_features = img_features.view(b, t, -1, cls_features.shape[-1]) | |
video_features = self.mit(cls_features) | |
return video_features, img_features | |
def forward(self, image, **kwargs): | |
image = rearrange(image, "b c t h w -> b t c h w") | |
video_features, _ = self.encode_video(image) | |
return video_features.reshape(*video_features.shape, 1, 1, 1) | |
def cache_text(self, text): | |
self.eval() | |
with torch.no_grad(): | |
if self.cache_text_features is None: | |
self.cache_text_features = self.encode_text(text) | |
self.train() | |
return self.cache_text_features | |
def forward_original(self, image, text): | |
b = image.shape[0] | |
video_features, img_features = self.encode_video(image) | |
img_features = img_features.mean(dim=1, keepdim=False) | |
if self.use_cache: | |
text_features = self.cache_text(text) | |
else: | |
text_features = self.encode_text(text) | |
text_features = text_features.unsqueeze(0).expand(b, -1, -1) | |
text_features = text_features + self.prompts_generator( | |
text_features, img_features | |
) | |
video_features = video_features / video_features.norm(dim=-1, keepdim=True) | |
text_features = text_features / text_features.norm(dim=-1, keepdim=True) | |
logit_scale = self.logit_scale.exp() | |
logits = torch.einsum("bd,bkd->bk", video_features, logit_scale * text_features) | |
return logits | |
def build_x_clip_model( | |
pretrained_path="./pretrained_weights/k400_32_8.pth", | |
droppath=0.0, | |
use_checkpoint=False, | |
logger=None, | |
prompts_alpha=1e-1, | |
prompts_layers=2, | |
use_cache=True, | |
mit_layers=4, | |
**kwargs, | |
): | |
state_dict = torch.load(pretrained_path, map_location="cpu")["model"] | |
T = int(pretrained_path.split("_")[-1].split(".")[0]) | |
print(T) | |
vit = "visual.proj" in state_dict | |
if vit: | |
vision_width = state_dict["visual.conv1.weight"].shape[0] | |
vision_layers = len( | |
[ | |
k | |
for k in state_dict.keys() | |
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight") | |
] | |
) | |
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |
grid_size = round( | |
(state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5 | |
) | |
image_resolution = vision_patch_size * grid_size | |
else: | |
counts: list = [ | |
len( | |
set( | |
k.split(".")[2] | |
for k in state_dict | |
if k.startswith(f"visual.layer{b}") | |
) | |
) | |
for b in [1, 2, 3, 4] | |
] | |
vision_layers = tuple(counts) | |
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |
output_width = round( | |
(state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5 | |
) | |
vision_patch_size = None | |
assert ( | |
output_width ** 2 + 1 | |
== state_dict["visual.attnpool.positional_embedding"].shape[0] | |
) | |
image_resolution = output_width * 32 | |
embed_dim = state_dict["text_projection"].shape[1] | |
context_length = state_dict["positional_embedding"].shape[0] | |
vocab_size = state_dict["token_embedding.weight"].shape[0] | |
transformer_width = state_dict["ln_final.weight"].shape[0] | |
transformer_heads = transformer_width // 64 | |
transformer_layers = len( | |
set( | |
k.split(".")[2] | |
for k in state_dict | |
if k.startswith(f"transformer.resblocks") | |
) | |
) | |
model = XCLIP( | |
embed_dim, | |
image_resolution, | |
vision_layers, | |
vision_width, | |
vision_patch_size, | |
context_length, | |
vocab_size, | |
transformer_width, | |
transformer_heads, | |
transformer_layers, | |
T=T, | |
droppath=droppath, | |
mit_layers=mit_layers, | |
prompts_alpha=prompts_alpha, | |
prompts_layers=prompts_layers, | |
use_checkpoint=use_checkpoint, | |
use_cache=use_cache, | |
) | |
for key in ["input_resolution", "context_length", "vocab_size"]: | |
if key in state_dict: | |
del state_dict[key] | |
msg = model.load_state_dict(state_dict, strict=False) | |
return model.eval() | |