Spaces:
Runtime error
Runtime error
import math | |
from functools import lru_cache, reduce | |
from operator import mul | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from einops import rearrange | |
from timm.models.layers import DropPath, trunc_normal_ | |
def fragment_infos(D, H, W, fragments=7, device="cuda"): | |
m = torch.arange(fragments).unsqueeze(-1).float() | |
m = (m + m.t() * fragments).reshape(1, 1, 1, fragments, fragments) | |
m = F.interpolate(m.to(device), size=(D, H, W)).permute(0, 2, 3, 4, 1) | |
return m.long() | |
def global_position_index( | |
D, | |
H, | |
W, | |
fragments=(1, 7, 7), | |
window_size=(8, 7, 7), | |
shift_size=(0, 0, 0), | |
device="cuda", | |
): | |
frags_d = torch.arange(fragments[0]) | |
frags_h = torch.arange(fragments[1]) | |
frags_w = torch.arange(fragments[2]) | |
frags = torch.stack( | |
torch.meshgrid(frags_d, frags_h, frags_w) | |
).float() # 3, Fd, Fh, Fw | |
coords = ( | |
torch.nn.functional.interpolate(frags[None].to(device), size=(D, H, W)) | |
.long() | |
.permute(0, 2, 3, 4, 1) | |
) | |
# print(shift_size) | |
coords = torch.roll( | |
coords, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3) | |
) | |
window_coords = window_partition(coords, window_size) | |
relative_coords = ( | |
window_coords[:, None, :] - window_coords[:, :, None] | |
) # Wd*Wh*Ww, Wd*Wh*Ww, 3 | |
return relative_coords # relative_coords | |
def get_adaptive_window_size( | |
base_window_size, input_x_size, base_x_size, | |
): | |
tw, hw, ww = base_window_size | |
tx_, hx_, wx_ = input_x_size | |
tx, hx, wx = base_x_size | |
print((tw * tx_) // tx, (hw * hx_) // hx, (ww * wx_) // wx) | |
return (tw * tx_) // tx, (hw * hx_) // hx, (ww * wx_) // wx | |
class Mlp(nn.Module): | |
"""Multilayer perceptron.""" | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, D, H, W, C) | |
window_size (tuple[int]): window size | |
Returns: | |
windows: (B*num_windows, window_size*window_size, C) | |
""" | |
B, D, H, W, C = x.shape | |
x = x.view( | |
B, | |
D // window_size[0], | |
window_size[0], | |
H // window_size[1], | |
window_size[1], | |
W // window_size[2], | |
window_size[2], | |
C, | |
) | |
windows = ( | |
x.permute(0, 1, 3, 5, 2, 4, 6, 7) | |
.contiguous() | |
.view(-1, reduce(mul, window_size), C) | |
) | |
return windows | |
def window_reverse(windows, window_size, B, D, H, W): | |
""" | |
Args: | |
windows: (B*num_windows, window_size, window_size, C) | |
window_size (tuple[int]): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, D, H, W, C) | |
""" | |
x = windows.view( | |
B, | |
D // window_size[0], | |
H // window_size[1], | |
W // window_size[2], | |
window_size[0], | |
window_size[1], | |
window_size[2], | |
-1, | |
) | |
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) | |
return x | |
def get_window_size(x_size, window_size, shift_size=None): | |
use_window_size = list(window_size) | |
if shift_size is not None: | |
use_shift_size = list(shift_size) | |
for i in range(len(x_size)): | |
if x_size[i] <= window_size[i]: | |
use_window_size[i] = x_size[i] | |
if shift_size is not None: | |
use_shift_size[i] = 0 | |
if shift_size is None: | |
return tuple(use_window_size) | |
else: | |
return tuple(use_window_size), tuple(use_shift_size) | |
class WindowAttention3D(nn.Module): | |
"""Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The temporal length, height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__( | |
self, | |
dim, | |
window_size, | |
num_heads, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
frag_bias=False, | |
): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wd, Wh, Ww | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros( | |
(2 * window_size[0] - 1) | |
* (2 * window_size[1] - 1) | |
* (2 * window_size[2] - 1), | |
num_heads, | |
) | |
) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH | |
if frag_bias: | |
self.fragment_position_bias_table = nn.Parameter( | |
torch.zeros( | |
(2 * window_size[0] - 1) | |
* (2 * window_size[1] - 1) | |
* (2 * window_size[2] - 1), | |
num_heads, | |
) | |
) | |
# get pair-wise relative position index for each token inside the window | |
coords_d = torch.arange(self.window_size[0]) | |
coords_h = torch.arange(self.window_size[1]) | |
coords_w = torch.arange(self.window_size[2]) | |
coords = torch.stack( | |
torch.meshgrid(coords_d, coords_h, coords_w) | |
) # 3, Wd, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww | |
relative_coords = ( | |
coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
) # 3, Wd*Wh*Ww, Wd*Wh*Ww | |
relative_coords = relative_coords.permute( | |
1, 2, 0 | |
).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3 | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 2] += self.window_size[2] - 1 | |
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * ( | |
2 * self.window_size[2] - 1 | |
) | |
relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1 | |
relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
trunc_normal_(self.relative_position_bias_table, std=0.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, mask=None, fmask=None, resized_window_size=None): | |
"""Forward function. | |
Args: | |
x: input features with shape of (num_windows*B, N, C) | |
mask: (0/-inf) mask with shape of (num_windows, N, N) or None | |
""" | |
# print(x.shape) | |
B_, N, C = x.shape | |
qkv = ( | |
self.qkv(x) | |
.reshape(B_, N, 3, self.num_heads, C // self.num_heads) | |
.permute(2, 0, 3, 1, 4) | |
) | |
q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
if resized_window_size is None: | |
rpi = self.relative_position_index[:N, :N] | |
else: | |
relative_position_index = self.relative_position_index.reshape( | |
*self.window_size, *self.window_size | |
) | |
d, h, w = resized_window_size | |
rpi = relative_position_index[:d, :h, :w, :d, :h, :w] | |
relative_position_bias = self.relative_position_bias_table[ | |
rpi.reshape(-1) | |
].reshape( | |
N, N, -1 | |
) # Wd*Wh*Ww,Wd*Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute( | |
2, 0, 1 | |
).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww | |
if hasattr(self, "fragment_position_bias_table"): | |
fragment_position_bias = self.fragment_position_bias_table[ | |
rpi.reshape(-1) | |
].reshape( | |
N, N, -1 | |
) # Wd*Wh*Ww,Wd*Wh*Ww,nH | |
fragment_position_bias = fragment_position_bias.permute( | |
2, 0, 1 | |
).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww | |
### Mask Position Bias | |
if fmask is not None: | |
# fgate = torch.where(fmask - fmask.transpose(-1, -2) == 0, 1, 0).float() | |
fgate = fmask.abs().sum(-1) | |
nW = fmask.shape[0] | |
relative_position_bias = relative_position_bias.unsqueeze(0) | |
fgate = fgate.unsqueeze(1) | |
# print(fgate.shape, relative_position_bias.shape) | |
if hasattr(self, "fragment_position_bias_table"): | |
relative_position_bias = ( | |
relative_position_bias * fgate | |
+ fragment_position_bias * (1 - fgate) | |
) | |
attn = attn.view( | |
B_ // nW, nW, self.num_heads, N, N | |
) + relative_position_bias.unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
else: | |
attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N | |
if mask is not None: | |
nW = mask.shape[0] | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( | |
1 | |
).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class SwinTransformerBlock3D(nn.Module): | |
"""Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
window_size (tuple[int]): Window size. | |
shift_size (tuple[int]): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
window_size=(2, 7, 7), | |
shift_size=(0, 0, 0), | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
use_checkpoint=False, | |
jump_attention=False, | |
frag_bias=False, | |
): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
self.use_checkpoint = use_checkpoint | |
self.jump_attention = jump_attention | |
self.frag_bias = frag_bias | |
assert ( | |
0 <= self.shift_size[0] < self.window_size[0] | |
), "shift_size must in 0-window_size" | |
assert ( | |
0 <= self.shift_size[1] < self.window_size[1] | |
), "shift_size must in 0-window_size" | |
assert ( | |
0 <= self.shift_size[2] < self.window_size[2] | |
), "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention3D( | |
dim, | |
window_size=self.window_size, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
frag_bias=frag_bias, | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
) | |
def forward_part1(self, x, mask_matrix, resized_window_size=None): | |
B, D, H, W, C = x.shape | |
window_size, shift_size = get_window_size( | |
(D, H, W), | |
self.window_size if resized_window_size is None else resized_window_size, | |
self.shift_size, | |
) | |
x = self.norm1(x) | |
# pad feature maps to multiples of window size | |
pad_l = pad_t = pad_d0 = 0 | |
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0] | |
pad_b = (window_size[1] - H % window_size[1]) % window_size[1] | |
pad_r = (window_size[2] - W % window_size[2]) % window_size[2] | |
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) | |
_, Dp, Hp, Wp, _ = x.shape | |
if False: # not hasattr(self, 'finfo_windows'): | |
finfo = fragment_infos(Dp, Hp, Wp) | |
# cyclic shift | |
if any(i > 0 for i in shift_size): | |
shifted_x = torch.roll( | |
x, | |
shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), | |
dims=(1, 2, 3), | |
) | |
if False: # not hasattr(self, 'finfo_windows'): | |
shifted_finfo = torch.roll( | |
finfo, | |
shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), | |
dims=(1, 2, 3), | |
) | |
attn_mask = mask_matrix | |
else: | |
shifted_x = x | |
if False: # not hasattr(self, 'finfo_windows'): | |
shifted_finfo = finfo | |
attn_mask = None | |
# partition windows | |
x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C | |
if False: # not hasattr(self, 'finfo_windows'): | |
self.finfo_windows = window_partition(shifted_finfo, window_size) | |
# W-MSA/SW-MSA | |
# print(shift_size) | |
gpi = global_position_index( | |
Dp, | |
Hp, | |
Wp, | |
fragments=(1,) + window_size[1:], | |
window_size=window_size, | |
shift_size=shift_size, | |
device=x.device, | |
) | |
attn_windows = self.attn( | |
x_windows, | |
mask=attn_mask, | |
fmask=gpi, | |
resized_window_size=window_size | |
if resized_window_size is not None | |
else None, | |
) # self.finfo_windows) # B*nW, Wd*Wh*Ww, C | |
# merge windows | |
attn_windows = attn_windows.view(-1, *(window_size + (C,))) | |
shifted_x = window_reverse( | |
attn_windows, window_size, B, Dp, Hp, Wp | |
) # B D' H' W' C | |
# reverse cyclic shift | |
if any(i > 0 for i in shift_size): | |
x = torch.roll( | |
shifted_x, | |
shifts=(shift_size[0], shift_size[1], shift_size[2]), | |
dims=(1, 2, 3), | |
) | |
else: | |
x = shifted_x | |
if pad_d1 > 0 or pad_r > 0 or pad_b > 0: | |
x = x[:, :D, :H, :W, :].contiguous() | |
return x | |
def forward_part2(self, x): | |
return self.drop_path(self.mlp(self.norm2(x))) | |
def forward(self, x, mask_matrix, resized_window_size=None): | |
"""Forward function. | |
Args: | |
x: Input feature, tensor size (B, D, H, W, C). | |
mask_matrix: Attention mask for cyclic shift. | |
""" | |
shortcut = x | |
if not self.jump_attention: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint( | |
self.forward_part1, x, mask_matrix, resized_window_size | |
) | |
else: | |
x = self.forward_part1(x, mask_matrix, resized_window_size) | |
x = shortcut + self.drop_path(x) | |
if self.use_checkpoint: | |
x = x + checkpoint.checkpoint(self.forward_part2, x) | |
else: | |
x = x + self.forward_part2(x) | |
return x | |
class PatchMerging(nn.Module): | |
"""Patch Merging Layer | |
Args: | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def forward(self, x): | |
"""Forward function. | |
Args: | |
x: Input feature, tensor size (B, D, H, W, C). | |
""" | |
B, D, H, W, C = x.shape | |
# padding | |
pad_input = (H % 2 == 1) or (W % 2 == 1) | |
if pad_input: | |
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) | |
x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C | |
x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C | |
x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C | |
x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C | |
x = self.norm(x) | |
x = self.reduction(x) | |
return x | |
# cache each stage results | |
def compute_mask(D, H, W, window_size, shift_size, device): | |
img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1 | |
cnt = 0 | |
for d in ( | |
slice(-window_size[0]), | |
slice(-window_size[0], -shift_size[0]), | |
slice(-shift_size[0], None), | |
): | |
for h in ( | |
slice(-window_size[1]), | |
slice(-window_size[1], -shift_size[1]), | |
slice(-shift_size[1], None), | |
): | |
for w in ( | |
slice(-window_size[2]), | |
slice(-window_size[2], -shift_size[2]), | |
slice(-shift_size[2], None), | |
): | |
img_mask[:, d, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1 | |
mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2] | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( | |
attn_mask == 0, float(0.0) | |
) | |
return attn_mask | |
class BasicLayer(nn.Module): | |
"""A basic Swin Transformer layer for one stage. | |
Args: | |
dim (int): Number of feature channels | |
depth (int): Depths of this stage. | |
num_heads (int): Number of attention head. | |
window_size (tuple[int]): Local window size. Default: (1,7,7). | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
""" | |
def __init__( | |
self, | |
dim, | |
depth, | |
num_heads, | |
window_size=(1, 7, 7), | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False, | |
jump_attention=False, | |
frag_bias=False, | |
): | |
super().__init__() | |
self.window_size = window_size | |
self.shift_size = tuple(i // 2 for i in window_size) | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# print(window_size) | |
# build blocks | |
self.blocks = nn.ModuleList( | |
[ | |
SwinTransformerBlock3D( | |
dim=dim, | |
num_heads=num_heads, | |
window_size=window_size, | |
shift_size=(0, 0, 0) if (i % 2 == 0) else self.shift_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path[i] | |
if isinstance(drop_path, list) | |
else drop_path, | |
norm_layer=norm_layer, | |
use_checkpoint=use_checkpoint, | |
jump_attention=jump_attention, | |
frag_bias=frag_bias, | |
) | |
for i in range(depth) | |
] | |
) | |
self.downsample = downsample | |
if self.downsample is not None: | |
self.downsample = downsample(dim=dim, norm_layer=norm_layer) | |
def forward(self, x, resized_window_size=None): | |
"""Forward function. | |
Args: | |
x: Input feature, tensor size (B, C, D, H, W). | |
""" | |
# calculate attention mask for SW-MSA | |
B, C, D, H, W = x.shape | |
window_size, shift_size = get_window_size( | |
(D, H, W), | |
self.window_size if resized_window_size is None else resized_window_size, | |
self.shift_size, | |
) | |
# print(window_size) | |
x = rearrange(x, "b c d h w -> b d h w c") | |
Dp = int(np.ceil(D / window_size[0])) * window_size[0] | |
Hp = int(np.ceil(H / window_size[1])) * window_size[1] | |
Wp = int(np.ceil(W / window_size[2])) * window_size[2] | |
attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) | |
for blk in self.blocks: | |
x = blk(x, attn_mask, resized_window_size=resized_window_size) | |
x = x.view(B, D, H, W, -1) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
x = rearrange(x, "b d h w c -> b c d h w") | |
return x | |
class PatchEmbed3D(nn.Module): | |
"""Video to Patch Embedding. | |
Args: | |
patch_size (int): Patch token size. Default: (2,4,4). | |
in_chans (int): Number of input video channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__(self, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, norm_layer=None): | |
super().__init__() | |
self.patch_size = patch_size | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.proj = nn.Conv3d( | |
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size | |
) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
# padding | |
_, _, D, H, W = x.size() | |
if W % self.patch_size[2] != 0: | |
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) | |
if H % self.patch_size[1] != 0: | |
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) | |
if D % self.patch_size[0] != 0: | |
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) | |
x = self.proj(x) # B C D Wh Ww | |
if self.norm is not None: | |
D, Wh, Ww = x.size(2), x.size(3), x.size(4) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) | |
return x | |
class SwinTransformer3D(nn.Module): | |
"""Swin Transformer backbone. | |
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - | |
https://arxiv.org/pdf/2103.14030 | |
Args: | |
patch_size (int | tuple(int)): Patch size. Default: (4,4,4). | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
depths (tuple[int]): Depths of each Swin Transformer stage. | |
num_heads (tuple[int]): Number of attention head of each stage. | |
window_size (int): Window size. Default: 7. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. | |
drop_rate (float): Dropout rate. | |
attn_drop_rate (float): Attention dropout rate. Default: 0. | |
drop_path_rate (float): Stochastic depth rate. Default: 0.2. | |
norm_layer: Normalization layer. Default: nn.LayerNorm. | |
patch_norm (bool): If True, add normalization after patch embedding. Default: False. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. | |
""" | |
def __init__( | |
self, | |
pretrained=None, | |
pretrained2d=False, | |
patch_size=(2, 4, 4), | |
in_chans=3, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 24], | |
window_size=(8, 7, 7), | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.1, | |
norm_layer=nn.LayerNorm, | |
patch_norm=True, | |
frozen_stages=-1, | |
use_checkpoint=True, | |
jump_attention=[False, False, False, False], | |
frag_biases=[True, True, True, False], | |
base_x_size=(32, 224, 224), | |
): | |
super().__init__() | |
self.pretrained = pretrained | |
self.pretrained2d = pretrained2d | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.patch_norm = patch_norm | |
self.frozen_stages = frozen_stages | |
self.window_size = window_size | |
self.patch_size = patch_size | |
self.base_x_size = base_x_size | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed3D( | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None, | |
) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer( | |
dim=int(embed_dim * 2 ** i_layer), | |
depth=depths[i_layer], | |
num_heads=num_heads[i_layer], | |
window_size=window_size[i_layer] | |
if isinstance(window_size, list) | |
else window_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchMerging if i_layer < self.num_layers - 1 else None, | |
use_checkpoint=use_checkpoint, | |
jump_attention=jump_attention[i_layer], | |
frag_bias=frag_biases[i_layer], | |
) | |
self.layers.append(layer) | |
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) | |
# add a norm layer for each output | |
self.norm = norm_layer(self.num_features) | |
self._freeze_stages() | |
self.init_weights() | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
if self.frozen_stages >= 1: | |
self.pos_drop.eval() | |
for i in range(0, self.frozen_stages): | |
m = self.layers[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def inflate_weights(self): | |
"""Inflate the swin2d parameters to swin3d. | |
The differences between swin3d and swin2d mainly lie in an extra | |
axis. To utilize the pretrained parameters in 2d model, | |
the weight of swin2d models should be inflated to fit in the shapes of | |
the 3d counterpart. | |
Args: | |
logger (logging.Logger): The logger used to print | |
debugging infomation. | |
""" | |
checkpoint = torch.load(self.pretrained, map_location="cpu") | |
state_dict = checkpoint["model"] | |
# delete relative_position_index since we always re-init it | |
relative_position_index_keys = [ | |
k for k in state_dict.keys() if "relative_position_index" in k | |
] | |
for k in relative_position_index_keys: | |
del state_dict[k] | |
# delete attn_mask since we always re-init it | |
attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k] | |
for k in attn_mask_keys: | |
del state_dict[k] | |
state_dict["patch_embed.proj.weight"] = ( | |
state_dict["patch_embed.proj.weight"] | |
.unsqueeze(2) | |
.repeat(1, 1, self.patch_size[0], 1, 1) | |
/ self.patch_size[0] | |
) | |
# bicubic interpolate relative_position_bias_table if not match | |
relative_position_bias_table_keys = [ | |
k for k in state_dict.keys() if "relative_position_bias_table" in k | |
] | |
for k in relative_position_bias_table_keys: | |
relative_position_bias_table_pretrained = state_dict[k] | |
relative_position_bias_table_current = self.state_dict()[k] | |
L1, nH1 = relative_position_bias_table_pretrained.size() | |
L2, nH2 = relative_position_bias_table_current.size() | |
L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) | |
wd = self.window_size[0] | |
if nH1 != nH2: | |
print(f"Error in loading {k}, passing") | |
else: | |
if L1 != L2: | |
S1 = int(L1 ** 0.5) | |
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( | |
relative_position_bias_table_pretrained.permute(1, 0).view( | |
1, nH1, S1, S1 | |
), | |
size=( | |
2 * self.window_size[1] - 1, | |
2 * self.window_size[2] - 1, | |
), | |
mode="bicubic", | |
) | |
relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view( | |
nH2, L2 | |
).permute( | |
1, 0 | |
) | |
state_dict[k] = relative_position_bias_table_pretrained.repeat( | |
2 * wd - 1, 1 | |
) | |
msg = self.load_state_dict(state_dict, strict=False) | |
print(msg) | |
print(f"=> loaded successfully '{self.pretrained}'") | |
del checkpoint | |
torch.cuda.empty_cache() | |
def load_swin(self, load_path, strict=False): | |
print("loading swin lah") | |
from collections import OrderedDict | |
model_state_dict = self.state_dict() | |
state_dict = torch.load(load_path)["state_dict"] | |
clean_dict = OrderedDict() | |
for key, value in state_dict.items(): | |
if "backbone" in key: | |
clean_key = key[9:] | |
clean_dict[clean_key] = value | |
if "relative_position_bias_table" in clean_key: | |
forked_key = clean_key.replace( | |
"relative_position_bias_table", "fragment_position_bias_table" | |
) | |
if forked_key in clean_dict: | |
print("load_swin_error?") | |
else: | |
clean_dict[forked_key] = value | |
# bicubic interpolate relative_position_bias_table if not match | |
relative_position_bias_table_keys = [ | |
k for k in clean_dict.keys() if "relative_position_bias_table" in k | |
] | |
for k in relative_position_bias_table_keys: | |
print(k) | |
relative_position_bias_table_pretrained = clean_dict[k] | |
relative_position_bias_table_current = model_state_dict[k] | |
L1, nH1 = relative_position_bias_table_pretrained.size() | |
L2, nH2 = relative_position_bias_table_current.size() | |
if isinstance(self.window_size, list): | |
i_layer = int(k.split(".")[1]) | |
L2 = (2 * self.window_size[i_layer][1] - 1) * ( | |
2 * self.window_size[i_layer][2] - 1 | |
) | |
wd = self.window_size[i_layer][0] | |
else: | |
L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) | |
wd = self.window_size[0] | |
if nH1 != nH2: | |
print(f"Error in loading {k}, passing") | |
else: | |
if L1 != L2: | |
S1 = int((L1 / 15) ** 0.5) | |
print( | |
relative_position_bias_table_pretrained.shape, 15, nH1, S1, S1 | |
) | |
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( | |
relative_position_bias_table_pretrained.permute(1, 0) | |
.view(nH1, 15, S1, S1) | |
.transpose(0, 1), | |
size=( | |
2 * self.window_size[i_layer][1] - 1, | |
2 * self.window_size[i_layer][2] - 1, | |
), | |
mode="bicubic", | |
) | |
relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.transpose( | |
0, 1 | |
).view( | |
nH2, 15, L2 | |
) | |
clean_dict[k] = relative_position_bias_table_pretrained # .repeat(2*wd-1,1) | |
## Clean Mismatched Keys | |
for key, value in model_state_dict.items(): | |
if key in clean_dict: | |
if value.shape != clean_dict[key].shape: | |
print(key) | |
clean_dict.pop(key) | |
self.load_state_dict(clean_dict, strict=strict) | |
def init_weights(self, pretrained=None): | |
print(self.pretrained, self.pretrained2d) | |
"""Initialize the weights in backbone. | |
Args: | |
pretrained (str, optional): Path to pre-trained weights. | |
Defaults to None. | |
""" | |
def _init_weights(m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
if pretrained: | |
self.pretrained = pretrained | |
if isinstance(self.pretrained, str): | |
self.apply(_init_weights) | |
# logger = get_root_logger() | |
# logger.info(f"load model from: {self.pretrained}") | |
if self.pretrained2d: | |
# Inflate 2D model into 3D model. | |
self.inflate_weights() | |
else: | |
# Directly load 3D model. | |
self.load_swin(self.pretrained, strict=False) # , logger=logger) | |
elif self.pretrained is None: | |
self.apply(_init_weights) | |
else: | |
raise TypeError("pretrained must be a str or None") | |
def forward(self, x, multi=False, layer=-1, adaptive_window_size=False): | |
"""Forward function.""" | |
if adaptive_window_size: | |
resized_window_size = get_adaptive_window_size( | |
self.window_size, x.shape[2:], self.base_x_size | |
) | |
else: | |
resized_window_size = None | |
x = self.patch_embed(x) | |
x = self.pos_drop(x) | |
feats = [x] | |
for l, mlayer in enumerate(self.layers): | |
x = mlayer(x.contiguous(), resized_window_size) | |
feats += [x] | |
x = rearrange(x, "n c d h w -> n d h w c") | |
x = self.norm(x) | |
x = rearrange(x, "n d h w c -> n c d h w") | |
if multi: | |
shape = x.shape[2:] | |
return torch.cat( | |
[F.interpolate(xi, size=shape, mode="trilinear") for xi in feats[:-1]], | |
1, | |
) | |
elif layer > -1: | |
print("something", len(feats)) | |
return feats[layer] | |
else: | |
return x | |
def train(self, mode=True): | |
"""Convert the model into training mode while keep layers freezed.""" | |
super(SwinTransformer3D, self).train(mode) | |
self._freeze_stages() | |
def swin_3d_tiny(**kwargs): | |
## Original Swin-3D Tiny with reduced windows | |
return SwinTransformer3D(depths=[2, 2, 6, 2], frag_biases=[0, 0, 0, 0], **kwargs) | |
def swin_3d_small(**kwargs): | |
# Original Swin-3D Small with reduced windows | |
return SwinTransformer3D(depths=[2, 2, 18, 2], frag_biases=[0, 0, 0, 0], **kwargs) | |
class SwinTransformer2D(nn.Sequential): | |
def __init__(self): | |
## Only backbone for Swin Transformer 2D | |
from timm.models import swin_tiny_patch4_window7_224 | |
super().__init__(*list(swin_tiny_patch4_window7_224().children())[:-2]) | |