Spaces:
Runtime error
Runtime error
| import math | |
| from functools import lru_cache, reduce | |
| from operator import mul | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as checkpoint | |
| from einops import rearrange | |
| from timm.models.layers import DropPath, trunc_normal_ | |
| def fragment_infos(D, H, W, fragments=7, device="cuda"): | |
| m = torch.arange(fragments).unsqueeze(-1).float() | |
| m = (m + m.t() * fragments).reshape(1, 1, 1, fragments, fragments) | |
| m = F.interpolate(m.to(device), size=(D, H, W)).permute(0, 2, 3, 4, 1) | |
| return m.long() | |
| def global_position_index( | |
| D, | |
| H, | |
| W, | |
| fragments=(1, 7, 7), | |
| window_size=(8, 7, 7), | |
| shift_size=(0, 0, 0), | |
| device="cuda", | |
| ): | |
| frags_d = torch.arange(fragments[0]) | |
| frags_h = torch.arange(fragments[1]) | |
| frags_w = torch.arange(fragments[2]) | |
| frags = torch.stack( | |
| torch.meshgrid(frags_d, frags_h, frags_w) | |
| ).float() # 3, Fd, Fh, Fw | |
| coords = ( | |
| torch.nn.functional.interpolate(frags[None].to(device), size=(D, H, W)) | |
| .long() | |
| .permute(0, 2, 3, 4, 1) | |
| ) | |
| # print(shift_size) | |
| coords = torch.roll( | |
| coords, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3) | |
| ) | |
| window_coords = window_partition(coords, window_size) | |
| relative_coords = ( | |
| window_coords[:, None, :] - window_coords[:, :, None] | |
| ) # Wd*Wh*Ww, Wd*Wh*Ww, 3 | |
| return relative_coords # relative_coords | |
| def get_adaptive_window_size( | |
| base_window_size, input_x_size, base_x_size, | |
| ): | |
| tw, hw, ww = base_window_size | |
| tx_, hx_, wx_ = input_x_size | |
| tx, hx, wx = base_x_size | |
| print((tw * tx_) // tx, (hw * hx_) // hx, (ww * wx_) // wx) | |
| return (tw * tx_) // tx, (hw * hx_) // hx, (ww * wx_) // wx | |
| class Mlp(nn.Module): | |
| """Multilayer perceptron.""" | |
| def __init__( | |
| self, | |
| in_features, | |
| hidden_features=None, | |
| out_features=None, | |
| act_layer=nn.GELU, | |
| drop=0.0, | |
| ): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| def window_partition(x, window_size): | |
| """ | |
| Args: | |
| x: (B, D, H, W, C) | |
| window_size (tuple[int]): window size | |
| Returns: | |
| windows: (B*num_windows, window_size*window_size, C) | |
| """ | |
| B, D, H, W, C = x.shape | |
| x = x.view( | |
| B, | |
| D // window_size[0], | |
| window_size[0], | |
| H // window_size[1], | |
| window_size[1], | |
| W // window_size[2], | |
| window_size[2], | |
| C, | |
| ) | |
| windows = ( | |
| x.permute(0, 1, 3, 5, 2, 4, 6, 7) | |
| .contiguous() | |
| .view(-1, reduce(mul, window_size), C) | |
| ) | |
| return windows | |
| def window_reverse(windows, window_size, B, D, H, W): | |
| """ | |
| Args: | |
| windows: (B*num_windows, window_size, window_size, C) | |
| window_size (tuple[int]): Window size | |
| H (int): Height of image | |
| W (int): Width of image | |
| Returns: | |
| x: (B, D, H, W, C) | |
| """ | |
| x = windows.view( | |
| B, | |
| D // window_size[0], | |
| H // window_size[1], | |
| W // window_size[2], | |
| window_size[0], | |
| window_size[1], | |
| window_size[2], | |
| -1, | |
| ) | |
| x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) | |
| return x | |
| def get_window_size(x_size, window_size, shift_size=None): | |
| use_window_size = list(window_size) | |
| if shift_size is not None: | |
| use_shift_size = list(shift_size) | |
| for i in range(len(x_size)): | |
| if x_size[i] <= window_size[i]: | |
| use_window_size[i] = x_size[i] | |
| if shift_size is not None: | |
| use_shift_size[i] = 0 | |
| if shift_size is None: | |
| return tuple(use_window_size) | |
| else: | |
| return tuple(use_window_size), tuple(use_shift_size) | |
| class WindowAttention3D(nn.Module): | |
| """Window based multi-head self attention (W-MSA) module with relative position bias. | |
| It supports both of shifted and non-shifted window. | |
| Args: | |
| dim (int): Number of input channels. | |
| window_size (tuple[int]): The temporal length, height and width of the window. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
| attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
| proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| window_size, | |
| num_heads, | |
| qkv_bias=False, | |
| qk_scale=None, | |
| attn_drop=0.0, | |
| proj_drop=0.0, | |
| frag_bias=False, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.window_size = window_size # Wd, Wh, Ww | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| # define a parameter table of relative position bias | |
| self.relative_position_bias_table = nn.Parameter( | |
| torch.zeros( | |
| (2 * window_size[0] - 1) | |
| * (2 * window_size[1] - 1) | |
| * (2 * window_size[2] - 1), | |
| num_heads, | |
| ) | |
| ) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH | |
| if frag_bias: | |
| self.fragment_position_bias_table = nn.Parameter( | |
| torch.zeros( | |
| (2 * window_size[0] - 1) | |
| * (2 * window_size[1] - 1) | |
| * (2 * window_size[2] - 1), | |
| num_heads, | |
| ) | |
| ) | |
| # get pair-wise relative position index for each token inside the window | |
| coords_d = torch.arange(self.window_size[0]) | |
| coords_h = torch.arange(self.window_size[1]) | |
| coords_w = torch.arange(self.window_size[2]) | |
| coords = torch.stack( | |
| torch.meshgrid(coords_d, coords_h, coords_w) | |
| ) # 3, Wd, Wh, Ww | |
| coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww | |
| relative_coords = ( | |
| coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
| ) # 3, Wd*Wh*Ww, Wd*Wh*Ww | |
| relative_coords = relative_coords.permute( | |
| 1, 2, 0 | |
| ).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3 | |
| relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
| relative_coords[:, :, 1] += self.window_size[1] - 1 | |
| relative_coords[:, :, 2] += self.window_size[2] - 1 | |
| relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * ( | |
| 2 * self.window_size[2] - 1 | |
| ) | |
| relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1 | |
| relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww | |
| self.register_buffer("relative_position_index", relative_position_index) | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| trunc_normal_(self.relative_position_bias_table, std=0.02) | |
| self.softmax = nn.Softmax(dim=-1) | |
| def forward(self, x, mask=None, fmask=None, resized_window_size=None): | |
| """Forward function. | |
| Args: | |
| x: input features with shape of (num_windows*B, N, C) | |
| mask: (0/-inf) mask with shape of (num_windows, N, N) or None | |
| """ | |
| # print(x.shape) | |
| B_, N, C = x.shape | |
| qkv = ( | |
| self.qkv(x) | |
| .reshape(B_, N, 3, self.num_heads, C // self.num_heads) | |
| .permute(2, 0, 3, 1, 4) | |
| ) | |
| q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C | |
| q = q * self.scale | |
| attn = q @ k.transpose(-2, -1) | |
| if resized_window_size is None: | |
| rpi = self.relative_position_index[:N, :N] | |
| else: | |
| relative_position_index = self.relative_position_index.reshape( | |
| *self.window_size, *self.window_size | |
| ) | |
| d, h, w = resized_window_size | |
| rpi = relative_position_index[:d, :h, :w, :d, :h, :w] | |
| relative_position_bias = self.relative_position_bias_table[ | |
| rpi.reshape(-1) | |
| ].reshape( | |
| N, N, -1 | |
| ) # Wd*Wh*Ww,Wd*Wh*Ww,nH | |
| relative_position_bias = relative_position_bias.permute( | |
| 2, 0, 1 | |
| ).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww | |
| if hasattr(self, "fragment_position_bias_table"): | |
| fragment_position_bias = self.fragment_position_bias_table[ | |
| rpi.reshape(-1) | |
| ].reshape( | |
| N, N, -1 | |
| ) # Wd*Wh*Ww,Wd*Wh*Ww,nH | |
| fragment_position_bias = fragment_position_bias.permute( | |
| 2, 0, 1 | |
| ).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww | |
| ### Mask Position Bias | |
| if fmask is not None: | |
| # fgate = torch.where(fmask - fmask.transpose(-1, -2) == 0, 1, 0).float() | |
| fgate = fmask.abs().sum(-1) | |
| nW = fmask.shape[0] | |
| relative_position_bias = relative_position_bias.unsqueeze(0) | |
| fgate = fgate.unsqueeze(1) | |
| # print(fgate.shape, relative_position_bias.shape) | |
| if hasattr(self, "fragment_position_bias_table"): | |
| relative_position_bias = ( | |
| relative_position_bias * fgate | |
| + fragment_position_bias * (1 - fgate) | |
| ) | |
| attn = attn.view( | |
| B_ // nW, nW, self.num_heads, N, N | |
| ) + relative_position_bias.unsqueeze(0) | |
| attn = attn.view(-1, self.num_heads, N, N) | |
| else: | |
| attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N | |
| if mask is not None: | |
| nW = mask.shape[0] | |
| attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( | |
| 1 | |
| ).unsqueeze(0) | |
| attn = attn.view(-1, self.num_heads, N, N) | |
| attn = self.softmax(attn) | |
| else: | |
| attn = self.softmax(attn) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class SwinTransformerBlock3D(nn.Module): | |
| """Swin Transformer Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads. | |
| window_size (tuple[int]): Window size. | |
| shift_size (tuple[int]): Shift size for SW-MSA. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
| act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| window_size=(2, 7, 7), | |
| shift_size=(0, 0, 0), | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop=0.0, | |
| attn_drop=0.0, | |
| drop_path=0.0, | |
| act_layer=nn.GELU, | |
| norm_layer=nn.LayerNorm, | |
| use_checkpoint=False, | |
| jump_attention=False, | |
| frag_bias=False, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.shift_size = shift_size | |
| self.mlp_ratio = mlp_ratio | |
| self.use_checkpoint = use_checkpoint | |
| self.jump_attention = jump_attention | |
| self.frag_bias = frag_bias | |
| assert ( | |
| 0 <= self.shift_size[0] < self.window_size[0] | |
| ), "shift_size must in 0-window_size" | |
| assert ( | |
| 0 <= self.shift_size[1] < self.window_size[1] | |
| ), "shift_size must in 0-window_size" | |
| assert ( | |
| 0 <= self.shift_size[2] < self.window_size[2] | |
| ), "shift_size must in 0-window_size" | |
| self.norm1 = norm_layer(dim) | |
| self.attn = WindowAttention3D( | |
| dim, | |
| window_size=self.window_size, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| attn_drop=attn_drop, | |
| proj_drop=drop, | |
| frag_bias=frag_bias, | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp( | |
| in_features=dim, | |
| hidden_features=mlp_hidden_dim, | |
| act_layer=act_layer, | |
| drop=drop, | |
| ) | |
| def forward_part1(self, x, mask_matrix, resized_window_size=None): | |
| B, D, H, W, C = x.shape | |
| window_size, shift_size = get_window_size( | |
| (D, H, W), | |
| self.window_size if resized_window_size is None else resized_window_size, | |
| self.shift_size, | |
| ) | |
| x = self.norm1(x) | |
| # pad feature maps to multiples of window size | |
| pad_l = pad_t = pad_d0 = 0 | |
| pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0] | |
| pad_b = (window_size[1] - H % window_size[1]) % window_size[1] | |
| pad_r = (window_size[2] - W % window_size[2]) % window_size[2] | |
| x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) | |
| _, Dp, Hp, Wp, _ = x.shape | |
| if False: # not hasattr(self, 'finfo_windows'): | |
| finfo = fragment_infos(Dp, Hp, Wp) | |
| # cyclic shift | |
| if any(i > 0 for i in shift_size): | |
| shifted_x = torch.roll( | |
| x, | |
| shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), | |
| dims=(1, 2, 3), | |
| ) | |
| if False: # not hasattr(self, 'finfo_windows'): | |
| shifted_finfo = torch.roll( | |
| finfo, | |
| shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), | |
| dims=(1, 2, 3), | |
| ) | |
| attn_mask = mask_matrix | |
| else: | |
| shifted_x = x | |
| if False: # not hasattr(self, 'finfo_windows'): | |
| shifted_finfo = finfo | |
| attn_mask = None | |
| # partition windows | |
| x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C | |
| if False: # not hasattr(self, 'finfo_windows'): | |
| self.finfo_windows = window_partition(shifted_finfo, window_size) | |
| # W-MSA/SW-MSA | |
| # print(shift_size) | |
| gpi = global_position_index( | |
| Dp, | |
| Hp, | |
| Wp, | |
| fragments=(1,) + window_size[1:], | |
| window_size=window_size, | |
| shift_size=shift_size, | |
| device=x.device, | |
| ) | |
| attn_windows = self.attn( | |
| x_windows, | |
| mask=attn_mask, | |
| fmask=gpi, | |
| resized_window_size=window_size | |
| if resized_window_size is not None | |
| else None, | |
| ) # self.finfo_windows) # B*nW, Wd*Wh*Ww, C | |
| # merge windows | |
| attn_windows = attn_windows.view(-1, *(window_size + (C,))) | |
| shifted_x = window_reverse( | |
| attn_windows, window_size, B, Dp, Hp, Wp | |
| ) # B D' H' W' C | |
| # reverse cyclic shift | |
| if any(i > 0 for i in shift_size): | |
| x = torch.roll( | |
| shifted_x, | |
| shifts=(shift_size[0], shift_size[1], shift_size[2]), | |
| dims=(1, 2, 3), | |
| ) | |
| else: | |
| x = shifted_x | |
| if pad_d1 > 0 or pad_r > 0 or pad_b > 0: | |
| x = x[:, :D, :H, :W, :].contiguous() | |
| return x | |
| def forward_part2(self, x): | |
| return self.drop_path(self.mlp(self.norm2(x))) | |
| def forward(self, x, mask_matrix, resized_window_size=None): | |
| """Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, D, H, W, C). | |
| mask_matrix: Attention mask for cyclic shift. | |
| """ | |
| shortcut = x | |
| if not self.jump_attention: | |
| if self.use_checkpoint: | |
| x = checkpoint.checkpoint( | |
| self.forward_part1, x, mask_matrix, resized_window_size | |
| ) | |
| else: | |
| x = self.forward_part1(x, mask_matrix, resized_window_size) | |
| x = shortcut + self.drop_path(x) | |
| if self.use_checkpoint: | |
| x = x + checkpoint.checkpoint(self.forward_part2, x) | |
| else: | |
| x = x + self.forward_part2(x) | |
| return x | |
| class PatchMerging(nn.Module): | |
| """Patch Merging Layer | |
| Args: | |
| dim (int): Number of input channels. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, dim, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.dim = dim | |
| self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
| self.norm = norm_layer(4 * dim) | |
| def forward(self, x): | |
| """Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, D, H, W, C). | |
| """ | |
| B, D, H, W, C = x.shape | |
| # padding | |
| pad_input = (H % 2 == 1) or (W % 2 == 1) | |
| if pad_input: | |
| x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) | |
| x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C | |
| x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C | |
| x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C | |
| x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C | |
| x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C | |
| x = self.norm(x) | |
| x = self.reduction(x) | |
| return x | |
| # cache each stage results | |
| def compute_mask(D, H, W, window_size, shift_size, device): | |
| img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1 | |
| cnt = 0 | |
| for d in ( | |
| slice(-window_size[0]), | |
| slice(-window_size[0], -shift_size[0]), | |
| slice(-shift_size[0], None), | |
| ): | |
| for h in ( | |
| slice(-window_size[1]), | |
| slice(-window_size[1], -shift_size[1]), | |
| slice(-shift_size[1], None), | |
| ): | |
| for w in ( | |
| slice(-window_size[2]), | |
| slice(-window_size[2], -shift_size[2]), | |
| slice(-shift_size[2], None), | |
| ): | |
| img_mask[:, d, h, w, :] = cnt | |
| cnt += 1 | |
| mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1 | |
| mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2] | |
| attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
| attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( | |
| attn_mask == 0, float(0.0) | |
| ) | |
| return attn_mask | |
| class BasicLayer(nn.Module): | |
| """A basic Swin Transformer layer for one stage. | |
| Args: | |
| dim (int): Number of feature channels | |
| depth (int): Depths of this stage. | |
| num_heads (int): Number of attention head. | |
| window_size (tuple[int]): Local window size. Default: (1,7,7). | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| depth, | |
| num_heads, | |
| window_size=(1, 7, 7), | |
| mlp_ratio=4.0, | |
| qkv_bias=False, | |
| qk_scale=None, | |
| drop=0.0, | |
| attn_drop=0.0, | |
| drop_path=0.0, | |
| norm_layer=nn.LayerNorm, | |
| downsample=None, | |
| use_checkpoint=False, | |
| jump_attention=False, | |
| frag_bias=False, | |
| ): | |
| super().__init__() | |
| self.window_size = window_size | |
| self.shift_size = tuple(i // 2 for i in window_size) | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # print(window_size) | |
| # build blocks | |
| self.blocks = nn.ModuleList( | |
| [ | |
| SwinTransformerBlock3D( | |
| dim=dim, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| shift_size=(0, 0, 0) if (i % 2 == 0) else self.shift_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path[i] | |
| if isinstance(drop_path, list) | |
| else drop_path, | |
| norm_layer=norm_layer, | |
| use_checkpoint=use_checkpoint, | |
| jump_attention=jump_attention, | |
| frag_bias=frag_bias, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| self.downsample = downsample | |
| if self.downsample is not None: | |
| self.downsample = downsample(dim=dim, norm_layer=norm_layer) | |
| def forward(self, x, resized_window_size=None): | |
| """Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, C, D, H, W). | |
| """ | |
| # calculate attention mask for SW-MSA | |
| B, C, D, H, W = x.shape | |
| window_size, shift_size = get_window_size( | |
| (D, H, W), | |
| self.window_size if resized_window_size is None else resized_window_size, | |
| self.shift_size, | |
| ) | |
| # print(window_size) | |
| x = rearrange(x, "b c d h w -> b d h w c") | |
| Dp = int(np.ceil(D / window_size[0])) * window_size[0] | |
| Hp = int(np.ceil(H / window_size[1])) * window_size[1] | |
| Wp = int(np.ceil(W / window_size[2])) * window_size[2] | |
| attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) | |
| for blk in self.blocks: | |
| x = blk(x, attn_mask, resized_window_size=resized_window_size) | |
| x = x.view(B, D, H, W, -1) | |
| if self.downsample is not None: | |
| x = self.downsample(x) | |
| x = rearrange(x, "b d h w c -> b c d h w") | |
| return x | |
| class PatchEmbed3D(nn.Module): | |
| """Video to Patch Embedding. | |
| Args: | |
| patch_size (int): Patch token size. Default: (2,4,4). | |
| in_chans (int): Number of input video channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: None | |
| """ | |
| def __init__(self, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, norm_layer=None): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| self.proj = nn.Conv3d( | |
| in_chans, embed_dim, kernel_size=patch_size, stride=patch_size | |
| ) | |
| if norm_layer is not None: | |
| self.norm = norm_layer(embed_dim) | |
| else: | |
| self.norm = None | |
| def forward(self, x): | |
| """Forward function.""" | |
| # padding | |
| _, _, D, H, W = x.size() | |
| if W % self.patch_size[2] != 0: | |
| x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) | |
| if H % self.patch_size[1] != 0: | |
| x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) | |
| if D % self.patch_size[0] != 0: | |
| x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) | |
| x = self.proj(x) # B C D Wh Ww | |
| if self.norm is not None: | |
| D, Wh, Ww = x.size(2), x.size(3), x.size(4) | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.norm(x) | |
| x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) | |
| return x | |
| class SwinTransformer3D(nn.Module): | |
| """Swin Transformer backbone. | |
| A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - | |
| https://arxiv.org/pdf/2103.14030 | |
| Args: | |
| patch_size (int | tuple(int)): Patch size. Default: (4,4,4). | |
| in_chans (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| depths (tuple[int]): Depths of each Swin Transformer stage. | |
| num_heads (tuple[int]): Number of attention head of each stage. | |
| window_size (int): Window size. Default: 7. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee | |
| qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. | |
| drop_rate (float): Dropout rate. | |
| attn_drop_rate (float): Attention dropout rate. Default: 0. | |
| drop_path_rate (float): Stochastic depth rate. Default: 0.2. | |
| norm_layer: Normalization layer. Default: nn.LayerNorm. | |
| patch_norm (bool): If True, add normalization after patch embedding. Default: False. | |
| frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
| -1 means not freezing any parameters. | |
| """ | |
| def __init__( | |
| self, | |
| pretrained=None, | |
| pretrained2d=False, | |
| patch_size=(2, 4, 4), | |
| in_chans=3, | |
| embed_dim=96, | |
| depths=[2, 2, 6, 2], | |
| num_heads=[3, 6, 12, 24], | |
| window_size=(8, 7, 7), | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0.0, | |
| attn_drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| norm_layer=nn.LayerNorm, | |
| patch_norm=True, | |
| frozen_stages=-1, | |
| use_checkpoint=True, | |
| jump_attention=[False, False, False, False], | |
| frag_biases=[True, True, True, False], | |
| base_x_size=(32, 224, 224), | |
| ): | |
| super().__init__() | |
| self.pretrained = pretrained | |
| self.pretrained2d = pretrained2d | |
| self.num_layers = len(depths) | |
| self.embed_dim = embed_dim | |
| self.patch_norm = patch_norm | |
| self.frozen_stages = frozen_stages | |
| self.window_size = window_size | |
| self.patch_size = patch_size | |
| self.base_x_size = base_x_size | |
| # split image into non-overlapping patches | |
| self.patch_embed = PatchEmbed3D( | |
| patch_size=patch_size, | |
| in_chans=in_chans, | |
| embed_dim=embed_dim, | |
| norm_layer=norm_layer if self.patch_norm else None, | |
| ) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| # stochastic depth | |
| dpr = [ | |
| x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
| ] # stochastic depth decay rule | |
| # build layers | |
| self.layers = nn.ModuleList() | |
| for i_layer in range(self.num_layers): | |
| layer = BasicLayer( | |
| dim=int(embed_dim * 2 ** i_layer), | |
| depth=depths[i_layer], | |
| num_heads=num_heads[i_layer], | |
| window_size=window_size[i_layer] | |
| if isinstance(window_size, list) | |
| else window_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop_rate, | |
| attn_drop=attn_drop_rate, | |
| drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], | |
| norm_layer=norm_layer, | |
| downsample=PatchMerging if i_layer < self.num_layers - 1 else None, | |
| use_checkpoint=use_checkpoint, | |
| jump_attention=jump_attention[i_layer], | |
| frag_bias=frag_biases[i_layer], | |
| ) | |
| self.layers.append(layer) | |
| self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) | |
| # add a norm layer for each output | |
| self.norm = norm_layer(self.num_features) | |
| self._freeze_stages() | |
| self.init_weights() | |
| def _freeze_stages(self): | |
| if self.frozen_stages >= 0: | |
| self.patch_embed.eval() | |
| for param in self.patch_embed.parameters(): | |
| param.requires_grad = False | |
| if self.frozen_stages >= 1: | |
| self.pos_drop.eval() | |
| for i in range(0, self.frozen_stages): | |
| m = self.layers[i] | |
| m.eval() | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| def inflate_weights(self): | |
| """Inflate the swin2d parameters to swin3d. | |
| The differences between swin3d and swin2d mainly lie in an extra | |
| axis. To utilize the pretrained parameters in 2d model, | |
| the weight of swin2d models should be inflated to fit in the shapes of | |
| the 3d counterpart. | |
| Args: | |
| logger (logging.Logger): The logger used to print | |
| debugging infomation. | |
| """ | |
| checkpoint = torch.load(self.pretrained, map_location="cpu") | |
| state_dict = checkpoint["model"] | |
| # delete relative_position_index since we always re-init it | |
| relative_position_index_keys = [ | |
| k for k in state_dict.keys() if "relative_position_index" in k | |
| ] | |
| for k in relative_position_index_keys: | |
| del state_dict[k] | |
| # delete attn_mask since we always re-init it | |
| attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k] | |
| for k in attn_mask_keys: | |
| del state_dict[k] | |
| state_dict["patch_embed.proj.weight"] = ( | |
| state_dict["patch_embed.proj.weight"] | |
| .unsqueeze(2) | |
| .repeat(1, 1, self.patch_size[0], 1, 1) | |
| / self.patch_size[0] | |
| ) | |
| # bicubic interpolate relative_position_bias_table if not match | |
| relative_position_bias_table_keys = [ | |
| k for k in state_dict.keys() if "relative_position_bias_table" in k | |
| ] | |
| for k in relative_position_bias_table_keys: | |
| relative_position_bias_table_pretrained = state_dict[k] | |
| relative_position_bias_table_current = self.state_dict()[k] | |
| L1, nH1 = relative_position_bias_table_pretrained.size() | |
| L2, nH2 = relative_position_bias_table_current.size() | |
| L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) | |
| wd = self.window_size[0] | |
| if nH1 != nH2: | |
| print(f"Error in loading {k}, passing") | |
| else: | |
| if L1 != L2: | |
| S1 = int(L1 ** 0.5) | |
| relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( | |
| relative_position_bias_table_pretrained.permute(1, 0).view( | |
| 1, nH1, S1, S1 | |
| ), | |
| size=( | |
| 2 * self.window_size[1] - 1, | |
| 2 * self.window_size[2] - 1, | |
| ), | |
| mode="bicubic", | |
| ) | |
| relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view( | |
| nH2, L2 | |
| ).permute( | |
| 1, 0 | |
| ) | |
| state_dict[k] = relative_position_bias_table_pretrained.repeat( | |
| 2 * wd - 1, 1 | |
| ) | |
| msg = self.load_state_dict(state_dict, strict=False) | |
| print(msg) | |
| print(f"=> loaded successfully '{self.pretrained}'") | |
| del checkpoint | |
| torch.cuda.empty_cache() | |
| def load_swin(self, load_path, strict=False): | |
| print("loading swin lah") | |
| from collections import OrderedDict | |
| model_state_dict = self.state_dict() | |
| state_dict = torch.load(load_path)["state_dict"] | |
| clean_dict = OrderedDict() | |
| for key, value in state_dict.items(): | |
| if "backbone" in key: | |
| clean_key = key[9:] | |
| clean_dict[clean_key] = value | |
| if "relative_position_bias_table" in clean_key: | |
| forked_key = clean_key.replace( | |
| "relative_position_bias_table", "fragment_position_bias_table" | |
| ) | |
| if forked_key in clean_dict: | |
| print("load_swin_error?") | |
| else: | |
| clean_dict[forked_key] = value | |
| # bicubic interpolate relative_position_bias_table if not match | |
| relative_position_bias_table_keys = [ | |
| k for k in clean_dict.keys() if "relative_position_bias_table" in k | |
| ] | |
| for k in relative_position_bias_table_keys: | |
| print(k) | |
| relative_position_bias_table_pretrained = clean_dict[k] | |
| relative_position_bias_table_current = model_state_dict[k] | |
| L1, nH1 = relative_position_bias_table_pretrained.size() | |
| L2, nH2 = relative_position_bias_table_current.size() | |
| if isinstance(self.window_size, list): | |
| i_layer = int(k.split(".")[1]) | |
| L2 = (2 * self.window_size[i_layer][1] - 1) * ( | |
| 2 * self.window_size[i_layer][2] - 1 | |
| ) | |
| wd = self.window_size[i_layer][0] | |
| else: | |
| L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) | |
| wd = self.window_size[0] | |
| if nH1 != nH2: | |
| print(f"Error in loading {k}, passing") | |
| else: | |
| if L1 != L2: | |
| S1 = int((L1 / 15) ** 0.5) | |
| print( | |
| relative_position_bias_table_pretrained.shape, 15, nH1, S1, S1 | |
| ) | |
| relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( | |
| relative_position_bias_table_pretrained.permute(1, 0) | |
| .view(nH1, 15, S1, S1) | |
| .transpose(0, 1), | |
| size=( | |
| 2 * self.window_size[i_layer][1] - 1, | |
| 2 * self.window_size[i_layer][2] - 1, | |
| ), | |
| mode="bicubic", | |
| ) | |
| relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.transpose( | |
| 0, 1 | |
| ).view( | |
| nH2, 15, L2 | |
| ) | |
| clean_dict[k] = relative_position_bias_table_pretrained # .repeat(2*wd-1,1) | |
| ## Clean Mismatched Keys | |
| for key, value in model_state_dict.items(): | |
| if key in clean_dict: | |
| if value.shape != clean_dict[key].shape: | |
| print(key) | |
| clean_dict.pop(key) | |
| self.load_state_dict(clean_dict, strict=strict) | |
| def init_weights(self, pretrained=None): | |
| print(self.pretrained, self.pretrained2d) | |
| """Initialize the weights in backbone. | |
| Args: | |
| pretrained (str, optional): Path to pre-trained weights. | |
| Defaults to None. | |
| """ | |
| def _init_weights(m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=0.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| if pretrained: | |
| self.pretrained = pretrained | |
| if isinstance(self.pretrained, str): | |
| self.apply(_init_weights) | |
| # logger = get_root_logger() | |
| # logger.info(f"load model from: {self.pretrained}") | |
| if self.pretrained2d: | |
| # Inflate 2D model into 3D model. | |
| self.inflate_weights() | |
| else: | |
| # Directly load 3D model. | |
| self.load_swin(self.pretrained, strict=False) # , logger=logger) | |
| elif self.pretrained is None: | |
| self.apply(_init_weights) | |
| else: | |
| raise TypeError("pretrained must be a str or None") | |
| def forward(self, x, multi=False, layer=-1, adaptive_window_size=False): | |
| """Forward function.""" | |
| if adaptive_window_size: | |
| resized_window_size = get_adaptive_window_size( | |
| self.window_size, x.shape[2:], self.base_x_size | |
| ) | |
| else: | |
| resized_window_size = None | |
| x = self.patch_embed(x) | |
| x = self.pos_drop(x) | |
| feats = [x] | |
| for l, mlayer in enumerate(self.layers): | |
| x = mlayer(x.contiguous(), resized_window_size) | |
| feats += [x] | |
| x = rearrange(x, "n c d h w -> n d h w c") | |
| x = self.norm(x) | |
| x = rearrange(x, "n d h w c -> n c d h w") | |
| if multi: | |
| shape = x.shape[2:] | |
| return torch.cat( | |
| [F.interpolate(xi, size=shape, mode="trilinear") for xi in feats[:-1]], | |
| 1, | |
| ) | |
| elif layer > -1: | |
| print("something", len(feats)) | |
| return feats[layer] | |
| else: | |
| return x | |
| def train(self, mode=True): | |
| """Convert the model into training mode while keep layers freezed.""" | |
| super(SwinTransformer3D, self).train(mode) | |
| self._freeze_stages() | |
| def swin_3d_tiny(**kwargs): | |
| ## Original Swin-3D Tiny with reduced windows | |
| return SwinTransformer3D(depths=[2, 2, 6, 2], frag_biases=[0, 0, 0, 0], **kwargs) | |
| def swin_3d_small(**kwargs): | |
| # Original Swin-3D Small with reduced windows | |
| return SwinTransformer3D(depths=[2, 2, 18, 2], frag_biases=[0, 0, 0, 0], **kwargs) | |
| class SwinTransformer2D(nn.Sequential): | |
| def __init__(self): | |
| ## Only backbone for Swin Transformer 2D | |
| from timm.models import swin_tiny_patch4_window7_224 | |
| super().__init__(*list(swin_tiny_patch4_window7_224().children())[:-2]) | |