llama7bserver / app.py
vykanand's picture
modified app.py
289f271
raw
history blame
1.22 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
# Load model and tokenizer once on startup
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5p-220m")
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5p-220m")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def generate(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_length=2048,
num_beams=3,
early_stopping=True,
no_repeat_ngram_size=3,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return output_text
# Create Gradio interface
iface = gr.Interface(
fn=generate,
inputs=gr.Textbox(lines=10, label="Input Prompt"),
outputs=gr.Textbox(label="Generated Output"),
title="LLaMA 7B Server",
description="A web interface for interacting with the LLaMA 7B model.",
allow_flagging="never"
)
# Launch the interface
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)