File size: 18,528 Bytes
3b6afc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
const OpenAIClient = require('./OpenAIClient');
const { ChatOpenAI } = require('langchain/chat_models/openai');
const { CallbackManager } = require('langchain/callbacks');
const { initializeCustomAgent, initializeFunctionsAgent } = require('./agents/');
const { findMessageContent } = require('../../utils');
const { loadTools } = require('./tools/util');
const { SelfReflectionTool } = require('./tools/');
const { HumanChatMessage, AIChatMessage } = require('langchain/schema');
const { instructions, imageInstructions, errorInstructions } = require('./prompts/instructions');
class PluginsClient extends OpenAIClient {
constructor(apiKey, options = {}) {
super(apiKey, options);
this.sender = options.sender ?? 'Assistant';
this.tools = [];
this.actions = [];
this.openAIApiKey = apiKey;
this.setOptions(options);
this.executor = null;
}
getActions(input = null) {
let output = 'Internal thoughts & actions taken:\n"';
let actions = input || this.actions;
if (actions[0]?.action && this.functionsAgent) {
actions = actions.map((step) => ({
log: `Action: ${step.action?.tool || ''}\nInput: ${
JSON.stringify(step.action?.toolInput) || ''
}\nObservation: ${step.observation}`,
}));
} else if (actions[0]?.action) {
actions = actions.map((step) => ({
log: `${step.action.log}\nObservation: ${step.observation}`,
}));
}
actions.forEach((actionObj, index) => {
output += `${actionObj.log}`;
if (index < actions.length - 1) {
output += '\n';
}
});
return output + '"';
}
buildErrorInput(message, errorMessage) {
const log = errorMessage.includes('Could not parse LLM output:')
? `A formatting error occurred with your response to the human's last message. You didn't follow the formatting instructions. Remember to ${instructions}`
: `You encountered an error while replying to the human's last message. Attempt to answer again or admit an answer cannot be given.\nError: ${errorMessage}`;
return `
${log}
${this.getActions()}
Human's last message: ${message}
`;
}
buildPromptPrefix(result, message) {
if ((result.output && result.output.includes('N/A')) || result.output === undefined) {
return null;
}
if (
result?.intermediateSteps?.length === 1 &&
result?.intermediateSteps[0]?.action?.toolInput === 'N/A'
) {
return null;
}
const internalActions =
result?.intermediateSteps?.length > 0
? this.getActions(result.intermediateSteps)
: 'Internal Actions Taken: None';
const toolBasedInstructions = internalActions.toLowerCase().includes('image')
? imageInstructions
: '';
const errorMessage = result.errorMessage ? `${errorInstructions} ${result.errorMessage}\n` : '';
const preliminaryAnswer =
result.output?.length > 0 ? `Preliminary Answer: "${result.output.trim()}"` : '';
const prefix = preliminaryAnswer
? 'review and improve the answer you generated using plugins in response to the User Message below. The user hasn\'t seen your answer or thoughts yet.'
: 'respond to the User Message below based on your preliminary thoughts & actions.';
return `As a helpful AI Assistant, ${prefix}${errorMessage}\n${internalActions}
${preliminaryAnswer}
Reply conversationally to the User based on your ${
preliminaryAnswer ? 'preliminary answer, ' : ''
}internal actions, thoughts, and observations, making improvements wherever possible, but do not modify URLs.
${
preliminaryAnswer
? ''
: '\nIf there is an incomplete thought or action, you are expected to complete it in your response now.\n'
}You must cite sources if you are using any web links. ${toolBasedInstructions}
Only respond with your conversational reply to the following User Message:
"${message}"`;
}
setOptions(options) {
this.agentOptions = options.agentOptions;
this.functionsAgent = this.agentOptions?.agent === 'functions';
this.agentIsGpt3 = this.agentOptions?.model.startsWith('gpt-3');
if (this.functionsAgent && this.agentOptions.model) {
this.agentOptions.model = this.getFunctionModelName(this.agentOptions.model);
}
super.setOptions(options);
this.isGpt3 = this.modelOptions.model.startsWith('gpt-3');
if (this.options.reverseProxyUrl) {
this.langchainProxy = this.options.reverseProxyUrl.match(/.*v1/)[0];
}
}
getSaveOptions() {
return {
chatGptLabel: this.options.chatGptLabel,
promptPrefix: this.options.promptPrefix,
...this.modelOptions,
agentOptions: this.agentOptions,
};
}
saveLatestAction(action) {
this.actions.push(action);
}
getFunctionModelName(input) {
if (input.startsWith('gpt-3.5-turbo')) {
return 'gpt-3.5-turbo';
} else if (input.startsWith('gpt-4')) {
return 'gpt-4';
} else {
return 'gpt-3.5-turbo';
}
}
getBuildMessagesOptions(opts) {
return {
isChatCompletion: true,
promptPrefix: opts.promptPrefix,
abortController: opts.abortController,
};
}
createLLM(modelOptions, configOptions) {
let credentials = { openAIApiKey: this.openAIApiKey };
let configuration = {
apiKey: this.openAIApiKey,
};
if (this.azure) {
credentials = {};
configuration = {};
}
if (this.options.debug) {
console.debug('createLLM: configOptions');
console.debug(configOptions);
}
return new ChatOpenAI({ credentials, configuration, ...modelOptions }, configOptions);
}
async initialize({ user, message, onAgentAction, onChainEnd, signal }) {
const modelOptions = {
modelName: this.agentOptions.model,
temperature: this.agentOptions.temperature,
};
const configOptions = {};
if (this.langchainProxy) {
configOptions.basePath = this.langchainProxy;
}
const model = this.createLLM(modelOptions, configOptions);
if (this.options.debug) {
console.debug(
`<-----Agent Model: ${model.modelName} | Temp: ${model.temperature} | Functions: ${this.functionsAgent}----->`,
);
}
this.availableTools = await loadTools({
user,
model,
tools: this.options.tools,
functions: this.functionsAgent,
options: {
openAIApiKey: this.openAIApiKey,
debug: this.options?.debug,
message,
},
});
// load tools
for (const tool of this.options.tools) {
const validTool = this.availableTools[tool];
if (tool === 'plugins') {
const plugins = await validTool();
this.tools = [...this.tools, ...plugins];
} else if (validTool) {
this.tools.push(await validTool());
}
}
if (this.options.debug) {
console.debug('Requested Tools');
console.debug(this.options.tools);
console.debug('Loaded Tools');
console.debug(this.tools.map((tool) => tool.name));
}
if (this.tools.length > 0 && !this.functionsAgent) {
this.tools.push(new SelfReflectionTool({ message, isGpt3: false }));
} else if (this.tools.length === 0) {
return;
}
const handleAction = (action, callback = null) => {
this.saveLatestAction(action);
if (this.options.debug) {
console.debug('Latest Agent Action ', this.actions[this.actions.length - 1]);
}
if (typeof callback === 'function') {
callback(action);
}
};
// Map Messages to Langchain format
const pastMessages = this.currentMessages
.slice(0, -1)
.map((msg) =>
msg?.isCreatedByUser || msg?.role?.toLowerCase() === 'user'
? new HumanChatMessage(msg.text)
: new AIChatMessage(msg.text),
);
// initialize agent
const initializer = this.functionsAgent ? initializeFunctionsAgent : initializeCustomAgent;
this.executor = await initializer({
model,
signal,
pastMessages,
tools: this.tools,
currentDateString: this.currentDateString,
verbose: this.options.debug,
returnIntermediateSteps: true,
callbackManager: CallbackManager.fromHandlers({
async handleAgentAction(action) {
handleAction(action, onAgentAction);
},
async handleChainEnd(action) {
if (typeof onChainEnd === 'function') {
onChainEnd(action);
}
},
}),
});
if (this.options.debug) {
console.debug('Loaded agent.');
}
onAgentAction(
{
tool: 'self-reflection',
toolInput: `Processing the User's message:\n"${message}"`,
log: '',
},
true,
);
}
async executorCall(message, signal) {
let errorMessage = '';
const maxAttempts = 1;
for (let attempts = 1; attempts <= maxAttempts; attempts++) {
const errorInput = this.buildErrorInput(message, errorMessage);
const input = attempts > 1 ? errorInput : message;
if (this.options.debug) {
console.debug(`Attempt ${attempts} of ${maxAttempts}`);
}
if (this.options.debug && errorMessage.length > 0) {
console.debug('Caught error, input:', input);
}
try {
this.result = await this.executor.call({ input, signal });
break; // Exit the loop if the function call is successful
} catch (err) {
console.error(err);
errorMessage = err.message;
const content = findMessageContent(message);
if (content) {
errorMessage = content;
break;
}
if (attempts === maxAttempts) {
this.result.output = `Encountered an error while attempting to respond. Error: ${err.message}`;
this.result.intermediateSteps = this.actions;
this.result.errorMessage = errorMessage;
break;
}
}
}
}
addImages(intermediateSteps, responseMessage) {
if (!intermediateSteps || !responseMessage) {
return;
}
intermediateSteps.forEach((step) => {
const { observation } = step;
if (!observation || !observation.includes('![')) {
return;
}
// Extract the image file path from the observation
const observedImagePath = observation.match(/\(\/images\/.*\.\w*\)/g)[0];
// Check if the responseMessage already includes the image file path
if (!responseMessage.text.includes(observedImagePath)) {
// If the image file path is not found, append the whole observation
responseMessage.text += '\n' + observation;
if (this.options.debug) {
console.debug('added image from intermediateSteps');
}
}
});
}
async handleResponseMessage(responseMessage, saveOptions, user) {
responseMessage.tokenCount = this.getTokenCountForResponse(responseMessage);
responseMessage.completionTokens = responseMessage.tokenCount;
await this.saveMessageToDatabase(responseMessage, saveOptions, user);
delete responseMessage.tokenCount;
return { ...responseMessage, ...this.result };
}
async sendMessage(message, opts = {}) {
const completionMode = this.options.tools.length === 0;
if (completionMode) {
this.setOptions(opts);
return super.sendMessage(message, opts);
}
console.log('Plugins sendMessage', message, opts);
const {
user,
conversationId,
responseMessageId,
saveOptions,
userMessage,
onAgentAction,
onChainEnd,
} = await this.handleStartMethods(message, opts);
this.currentMessages.push(userMessage);
let {
prompt: payload,
tokenCountMap,
promptTokens,
messages,
} = await this.buildMessages(
this.currentMessages,
userMessage.messageId,
this.getBuildMessagesOptions({
promptPrefix: null,
abortController: this.abortController,
}),
);
if (tokenCountMap) {
console.dir(tokenCountMap, { depth: null });
if (tokenCountMap[userMessage.messageId]) {
userMessage.tokenCount = tokenCountMap[userMessage.messageId];
console.log('userMessage.tokenCount', userMessage.tokenCount);
}
payload = payload.map((message) => {
const messageWithoutTokenCount = message;
delete messageWithoutTokenCount.tokenCount;
return messageWithoutTokenCount;
});
this.handleTokenCountMap(tokenCountMap);
}
this.result = {};
if (messages) {
this.currentMessages = messages;
}
await this.saveMessageToDatabase(userMessage, saveOptions, user);
const responseMessage = {
messageId: responseMessageId,
conversationId,
parentMessageId: userMessage.messageId,
isCreatedByUser: false,
model: this.modelOptions.model,
sender: this.sender,
promptTokens,
};
await this.initialize({
user,
message,
onAgentAction,
onChainEnd,
signal: this.abortController.signal,
});
await this.executorCall(message, this.abortController.signal);
// If message was aborted mid-generation
if (this.result?.errorMessage?.length > 0 && this.result?.errorMessage?.includes('cancel')) {
responseMessage.text = 'Cancelled.';
return await this.handleResponseMessage(responseMessage, saveOptions, user);
}
if (this.agentOptions.skipCompletion && this.result.output) {
responseMessage.text = this.result.output;
this.addImages(this.result.intermediateSteps, responseMessage);
await this.generateTextStream(this.result.output, opts.onProgress, { delay: 8 });
return await this.handleResponseMessage(responseMessage, saveOptions, user);
}
if (this.options.debug) {
console.debug('Plugins completion phase: this.result');
console.debug(this.result);
}
const promptPrefix = this.buildPromptPrefix(this.result, message);
if (this.options.debug) {
console.debug('Plugins: promptPrefix');
console.debug(promptPrefix);
}
payload = await this.buildCompletionPrompt({
messages: this.currentMessages,
promptPrefix,
});
if (this.options.debug) {
console.debug('buildCompletionPrompt Payload');
console.debug(payload);
}
responseMessage.text = await this.sendCompletion(payload, opts);
return await this.handleResponseMessage(responseMessage, saveOptions, user);
}
async buildCompletionPrompt({ messages, promptPrefix: _promptPrefix }) {
if (this.options.debug) {
console.debug('buildCompletionPrompt messages', messages);
}
const orderedMessages = messages;
let promptPrefix = _promptPrefix.trim();
// If the prompt prefix doesn't end with the end token, add it.
if (!promptPrefix.endsWith(`${this.endToken}`)) {
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
}
promptPrefix = `${this.startToken}Instructions:\n${promptPrefix}`;
const promptSuffix = `${this.startToken}${this.chatGptLabel ?? 'Assistant'}:\n`;
const instructionsPayload = {
role: 'system',
name: 'instructions',
content: promptPrefix,
};
const messagePayload = {
role: 'system',
content: promptSuffix,
};
if (this.isGpt3) {
instructionsPayload.role = 'user';
messagePayload.role = 'user';
instructionsPayload.content += `\n${promptSuffix}`;
}
// testing if this works with browser endpoint
if (!this.isGpt3 && this.options.reverseProxyUrl) {
instructionsPayload.role = 'user';
}
let currentTokenCount =
this.getTokenCountForMessage(instructionsPayload) +
this.getTokenCountForMessage(messagePayload);
let promptBody = '';
const maxTokenCount = this.maxPromptTokens;
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
// Do this within a recursive async function so that it doesn't block the event loop for too long.
const buildPromptBody = async () => {
if (currentTokenCount < maxTokenCount && orderedMessages.length > 0) {
const message = orderedMessages.pop();
const isCreatedByUser = message.isCreatedByUser || message.role?.toLowerCase() === 'user';
const roleLabel = isCreatedByUser ? this.userLabel : this.chatGptLabel;
let messageString = `${this.startToken}${roleLabel}:\n${message.text}${this.endToken}\n`;
let newPromptBody = `${messageString}${promptBody}`;
const tokenCountForMessage = this.getTokenCount(messageString);
const newTokenCount = currentTokenCount + tokenCountForMessage;
if (newTokenCount > maxTokenCount) {
if (promptBody) {
// This message would put us over the token limit, so don't add it.
return false;
}
// This is the first message, so we can't add it. Just throw an error.
throw new Error(
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
);
}
promptBody = newPromptBody;
currentTokenCount = newTokenCount;
// wait for next tick to avoid blocking the event loop
await new Promise((resolve) => setTimeout(resolve, 0));
return buildPromptBody();
}
return true;
};
await buildPromptBody();
const prompt = promptBody;
messagePayload.content = prompt;
// Add 2 tokens for metadata after all messages have been counted.
currentTokenCount += 2;
if (this.isGpt3 && messagePayload.content.length > 0) {
const context = 'Chat History:\n';
messagePayload.content = `${context}${prompt}`;
currentTokenCount += this.getTokenCount(context);
}
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
this.modelOptions.max_tokens = Math.min(
this.maxContextTokens - currentTokenCount,
this.maxResponseTokens,
);
if (this.isGpt3) {
messagePayload.content += promptSuffix;
return [instructionsPayload, messagePayload];
}
const result = [messagePayload, instructionsPayload];
if (this.functionsAgent && !this.isGpt3) {
result[1].content = `${result[1].content}\n${this.startToken}${this.chatGptLabel}:\nSure thing! Here is the output you requested:\n`;
}
return result.filter((message) => message.content.length > 0);
}
}
module.exports = PluginsClient;
|