Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,566 Bytes
02a40a0 e0b7c76 02a40a0 4f54565 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import sys
# Mock audio modules to avoid installing them
sys.modules["audioop"] = type("audioop", (), {"__file__": ""})()
sys.modules["pyaudioop"] = type("pyaudioop", (), {"__file__": ""})()
import torch
import gradio as gr
import supervision as sv
import spaces
from transformers import AutoProcessor, Owlv2ForObjectDetection
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
@spaces.GPU
def init_model(model_id):
processor = AutoProcessor.from_pretrained(model_id)
model = Owlv2ForObjectDetection.from_pretrained(model_id)
model.eval()
model.to(DEVICE)
return processor, model
@spaces.GPU
def inference(prompts, target_image, model_id, conf_thresh, iou_thresh, prompt_type):
processor, model = init_model(model_id)
result = None
class_names = {}
if prompt_type == "Text":
inputs = processor(
images=target_image,
text=prompts["texts"],
return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
outputs = model(**inputs)
target_sizes = torch.tensor([target_image.size[::-1]])
result = processor.post_process_grounded_object_detection(
outputs=outputs,
target_sizes=target_sizes,
threshold=conf_thresh
)[0]
class_names = {k: v for k, v in enumerate(prompts["texts"])}
elif prompt_type == "Visual":
inputs = processor(
images=target_image,
query_images=prompts["images"],
return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
# Post-process results
target_sizes = torch.tensor([target_image.size[::-1]])
result = processor.post_process_image_guided_detection(
outputs=outputs,
target_sizes=target_sizes,
threshold=conf_thresh,
nms_threshold=iou_thresh
)[0]
# prepare for supervision: add 0 label for all boxes
result['labels'] = torch.zeros(len(result['boxes']), dtype=torch.int64)
class_names = {0: "object"}
detections = sv.Detections.from_transformers(result, class_names)
resolution_wh = target_image.size
thickness = sv.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
text_scale = sv.calculate_optimal_text_scale(resolution_wh=resolution_wh)
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(detections['class_name'], detections.confidence)
]
annotated_image = target_image.copy()
annotated_image = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=thickness).annotate(
scene=annotated_image, detections=detections)
annotated_image = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX, text_scale=text_scale, smart_position=True).annotate(
scene=annotated_image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
with gr.Row():
target_image = gr.Image(type="pil", label="Target Image", visible=True, interactive=True)
detect_button = gr.Button(value="Detect Objects")
prompt_type = gr.Textbox(value='Visual', visible=False) # Default prompt type
with gr.Tab("Visual") as visual_tab:
with gr.Row():
prompt_image = gr.Image(type="pil", label="Prompt Image", visible=True, interactive=True)
with gr.Tab("Text") as text_tab:
texts = gr.Textbox(label="Input Texts", value='', placeholder='person,bus', visible=True, interactive=True)
visual_tab.select(
fn=lambda: ("Visual", gr.update(visible=True)),
inputs=None,
outputs=[prompt_type, prompt_image]
)
text_tab.select(
fn=lambda: ("Text", gr.update(value=None, visible=False)),
inputs=None,
outputs=[prompt_type, prompt_image]
)
model_id = gr.Dropdown(
label="Model",
choices=[
"google/owlv2-base-patch16-ensemble",
"google/owlv2-large-patch14"
],
value="google/owlv2-base-patch16-ensemble",
)
conf_thresh = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.25,
)
iou_thresh = gr.Slider(
label="IoU Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.70,
)
with gr.Column():
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
def run_inference(prompt_image, target_image, texts, model_id, conf_thresh, iou_thresh, prompt_type):
# add text/built-in prompts
if prompt_type == "Text":
texts = [text.strip() for text in texts.split(',')]
prompts = {
"texts": texts
}
# add visual prompt
elif prompt_type == "Visual":
prompts = {
"images": prompt_image,
}
return inference(prompts, target_image, model_id, conf_thresh, iou_thresh, prompt_type)
detect_button.click(
fn=run_inference,
inputs=[prompt_image, target_image, texts, model_id, conf_thresh, iou_thresh, prompt_type],
outputs=[output_image],
)
###################### Examples ##########################
image_examples_list = [[
"test-data/target1.jpg",
"test-data/prompt1.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
],
[
"test-data/target2.jpg",
"test-data/prompt2.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
],
[
"test-data/target3.jpg",
"test-data/prompt3.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
],
[
"test-data/target4.jpg",
"test-data/prompt4.jpg",
"google/owlv2-base-patch16-ensemble",
0.9,
0.3,
]
]
text_examples = gr.Examples(
examples=[[
"test-data/target1.jpg",
"logo",
"google/owlv2-base-patch16-ensemble",
0.3],
[
"test-data/target2.jpg",
"cat,remote",
"google/owlv2-base-patch16-ensemble",
0.3],
[
"test-data/target3.jpg",
"frog,spider,lizard",
"google/owlv2-base-patch16-ensemble",
0.3],
[
"test-data/target4.jpg",
"cat",
"google/owlv2-base-patch16-ensemble",
0.3]
],
inputs=[target_image, texts, model_id, conf_thresh],
visible=False, cache_examples=False, label="Text Prompt Examples")
image_examples = gr.Examples(
examples=image_examples_list,
inputs=[target_image, prompt_image, model_id, conf_thresh, iou_thresh],
visible=True, cache_examples=False, label="Box Visual Prompt Examples")
# Examples update
def update_text_examples():
return gr.Dataset(visible=True), gr.Dataset(visible=False), gr.update(visible=False)
def update_visual_examples():
return gr.Dataset(visible=False), gr.Dataset(visible=True), gr.update(visible=True)
text_tab.select(
fn=update_text_examples,
inputs=None,
outputs=[text_examples.dataset, image_examples.dataset, iou_thresh]
)
visual_tab.select(
fn=update_visual_examples,
inputs=None,
outputs=[text_examples.dataset, image_examples.dataset, iou_thresh]
)
return target_image, prompt_image, model_id, conf_thresh, iou_thresh, image_examples_list
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>OWLv2: Zero-shot detection with visual prompt π</h1>
""")
gr.Markdown("""
This demo showcases the OWLv2 model's ability to perform zero-shot object detection using visual and text prompts.
You can either provide a text prompt or an image as a visual prompt to detect objects in the target image.
For visual prompting, following sample code is used, taken from the HF documentation:
```python
processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")
target_image = Image.open(...)
prompt_image = Image.open(...)
inputs = processor(images=target_image, query_images=prompt_image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
target_sizes = torch.Tensor([image.size[::-1]])
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=0.9, nms_threshold=0.3, target_sizes=target_sizes)
```
For some reason, visual prompt works much worse than text, perhaps it's HF implementation issue.
""")
with gr.Row():
with gr.Column():
# Create a list of all UI components
ui_components = app()
# Unpack the components
target_image, prompt_image, model_id, conf_thresh, iou_thresh, image_examples_list = ui_components
gradio_app.load(
fn=lambda: image_examples_list[1],
outputs=[target_image, prompt_image, model_id, conf_thresh, iou_thresh]
)
gradio_app.launch(allowed_paths=["figures"])
|