Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from transformers import SamModel, SamProcessor
|
8 |
+
from diffusers import StableDiffusionInpaintPipeline
|
9 |
+
import io
|
10 |
+
|
11 |
+
# Initialize SAM model and processor
|
12 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to("cuda")
|
13 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
14 |
+
|
15 |
+
# Initialize Inpainting pipeline
|
16 |
+
inpaint_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
17 |
+
"runwayml/stable-diffusion-inpainting",
|
18 |
+
torch_dtype=torch.float16
|
19 |
+
).to("cuda")
|
20 |
+
inpaint_pipeline.enable_model_cpu_offload()
|
21 |
+
|
22 |
+
def mask_to_rgba(mask):
|
23 |
+
"""
|
24 |
+
Converts a binary mask to an RGBA image for visualization.
|
25 |
+
"""
|
26 |
+
bg_transparent = np.zeros(mask.shape + (4,), dtype=np.uint8)
|
27 |
+
bg_transparent[mask == 1] = [0, 255, 0, 127] # Green with transparency
|
28 |
+
return bg_transparent
|
29 |
+
|
30 |
+
def generate_mask(image, input_points):
|
31 |
+
"""
|
32 |
+
Generates a binary mask using SAM based on input points.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image (PIL.Image): The input image.
|
36 |
+
input_points (list of lists): List of points selected by the user.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
np.ndarray: Binary mask where the object is marked with 1s.
|
40 |
+
"""
|
41 |
+
if not input_points:
|
42 |
+
return None
|
43 |
+
|
44 |
+
# Convert image to RGB if not already
|
45 |
+
image = image.convert("RGB")
|
46 |
+
|
47 |
+
# Flatten the list of points
|
48 |
+
points = [tuple(point) for point in input_points]
|
49 |
+
|
50 |
+
# Prepare inputs for SAM
|
51 |
+
inputs = sam_processor(image, points=points, return_tensors="pt").to("cuda")
|
52 |
+
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = sam_model(**inputs)
|
55 |
+
|
56 |
+
# Post-process masks
|
57 |
+
masks = sam_processor.image_processor.post_process_masks(
|
58 |
+
outputs.pred_masks.cpu(),
|
59 |
+
inputs["original_sizes"].cpu(),
|
60 |
+
inputs["reshaped_input_sizes"].cpu()
|
61 |
+
)
|
62 |
+
|
63 |
+
if len(masks) == 0:
|
64 |
+
return None
|
65 |
+
|
66 |
+
# Select the mask with the highest IoU score
|
67 |
+
best_mask = masks[0][0][outputs.iou_scores.argmax()]
|
68 |
+
|
69 |
+
# Invert mask: object=1, background=0
|
70 |
+
binary_mask = ~best_mask.numpy().astype(bool).astype(int)
|
71 |
+
|
72 |
+
return binary_mask
|
73 |
+
|
74 |
+
def replace_object(image, mask, prompt, negative_prompt, seed, guidance_scale):
|
75 |
+
"""
|
76 |
+
Replaces the selected object in the image based on the prompt.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
image (PIL.Image): The original image.
|
80 |
+
mask (np.ndarray): Binary mask of the selected object.
|
81 |
+
prompt (str): Text prompt describing the replacement.
|
82 |
+
negative_prompt (str): Negative text prompt to refine generation.
|
83 |
+
seed (int): Random seed for reproducibility.
|
84 |
+
guidance_scale (float): Guidance scale for the inpainting model.
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
PIL.Image: The augmented image with the object replaced.
|
88 |
+
"""
|
89 |
+
if mask is None:
|
90 |
+
return image
|
91 |
+
|
92 |
+
mask_image = Image.fromarray((mask * 255).astype(np.uint8))
|
93 |
+
|
94 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
95 |
+
|
96 |
+
try:
|
97 |
+
result = inpaint_pipeline(
|
98 |
+
prompt=prompt,
|
99 |
+
image=image,
|
100 |
+
mask_image=mask_image,
|
101 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
102 |
+
generator=generator,
|
103 |
+
guidance_scale=guidance_scale
|
104 |
+
).images[0]
|
105 |
+
return result
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Inpainting error: {e}")
|
108 |
+
return image
|
109 |
+
|
110 |
+
def visualize_mask(image, mask):
|
111 |
+
"""
|
112 |
+
Overlays the mask on the image for visualization.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
image (PIL.Image): The original image.
|
116 |
+
mask (np.ndarray): Binary mask of the selected object.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
PIL.Image: Image with mask overlay.
|
120 |
+
"""
|
121 |
+
if mask is None:
|
122 |
+
return image
|
123 |
+
|
124 |
+
mask_rgba = mask_to_rgba(mask)
|
125 |
+
mask_pil = Image.fromarray(mask_rgba)
|
126 |
+
overlay = Image.alpha_composite(image.convert("RGBA"), mask_pil)
|
127 |
+
return overlay.convert("RGB")
|
128 |
+
|
129 |
+
def process(image, points, prompt, negative_prompt, seed, guidance_scale):
|
130 |
+
"""
|
131 |
+
Processes the image by replacing the selected object based on the prompt.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
image (PIL.Image): Uploaded image.
|
135 |
+
points (list of lists): Points selected on the image.
|
136 |
+
prompt (str): Text prompt for replacement.
|
137 |
+
negative_prompt (str): Negative text prompt.
|
138 |
+
seed (int): Seed for reproducibility.
|
139 |
+
guidance_scale (float): Guidance scale.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
Tuple of images: Original with mask overlay and augmented image.
|
143 |
+
"""
|
144 |
+
mask = generate_mask(image, points)
|
145 |
+
masked_image = visualize_mask(image, mask)
|
146 |
+
augmented_image = replace_object(image, mask, prompt, negative_prompt, seed, guidance_scale)
|
147 |
+
return masked_image, augmented_image
|
148 |
+
|
149 |
+
# Define Gradio Interface
|
150 |
+
with gr.Blocks() as demo:
|
151 |
+
gr.Markdown("# Object Replacement App")
|
152 |
+
gr.Markdown(
|
153 |
+
"""
|
154 |
+
Upload an image, select points on the object you want to replace, provide a text prompt for the replacement, and view the augmented image.
|
155 |
+
"""
|
156 |
+
)
|
157 |
+
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column():
|
160 |
+
image_input = gr.Image(label="Upload Image", type="pil")
|
161 |
+
prompt_input = gr.Textbox(label="Replacement Prompt", placeholder="e.g., a red sports car", lines=2)
|
162 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt", placeholder="e.g., blurry, low quality", lines=2)
|
163 |
+
seed_input = gr.Number(label="Seed", value=42)
|
164 |
+
guidance_scale_input = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=7.5)
|
165 |
+
process_button = gr.Button("Replace Object")
|
166 |
+
with gr.Column():
|
167 |
+
masked_output = gr.Image(label="Selected Object Mask Overlay")
|
168 |
+
augmented_output = gr.Image(label="Augmented Image")
|
169 |
+
|
170 |
+
image_input.change(fn=lambda img: img, inputs=image_input, outputs=masked_output)
|
171 |
+
|
172 |
+
process_button.click(
|
173 |
+
fn=process,
|
174 |
+
inputs=[image_input, gr.State(), prompt_input, negative_prompt_input, seed_input, guidance_scale_input],
|
175 |
+
outputs=[masked_output, augmented_output]
|
176 |
+
)
|
177 |
+
|
178 |
+
gr.Markdown(
|
179 |
+
"""
|
180 |
+
**Instructions:**
|
181 |
+
1. **Upload Image:** Upload the image containing the object you want to replace.
|
182 |
+
2. **Select Points:** Click on the image to select points on the object. Use multiple points for better mask accuracy.
|
183 |
+
3. **Enter Prompts:** Provide a replacement prompt and optionally a negative prompt to refine the output.
|
184 |
+
4. **Adjust Settings:** Set the seed for reproducibility and adjust the guidance scale as needed.
|
185 |
+
5. **Replace Object:** Click the "Replace Object" button to generate the augmented image.
|
186 |
+
"""
|
187 |
+
)
|
188 |
+
|
189 |
+
# Launch the app
|
190 |
+
demo.launch()
|