Spaces:
Sleeping
Sleeping
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
src/f5_tts/train/finetune_cli.py
CHANGED
|
@@ -45,7 +45,7 @@ def parse_args():
|
|
| 45 |
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X steps")
|
| 46 |
parser.add_argument("--last_per_steps", type=int, default=50000, help="Save last checkpoint every X steps")
|
| 47 |
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
| 48 |
-
parser.add_argument("--pretrain", type=str, default=None, help="
|
| 49 |
parser.add_argument(
|
| 50 |
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
| 51 |
)
|
|
@@ -89,7 +89,11 @@ def main():
|
|
| 89 |
if args.finetune:
|
| 90 |
if not os.path.isdir(checkpoint_path):
|
| 91 |
os.makedirs(checkpoint_path, exist_ok=True)
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
| 95 |
tokenizer = args.tokenizer
|
|
|
|
| 45 |
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X steps")
|
| 46 |
parser.add_argument("--last_per_steps", type=int, default=50000, help="Save last checkpoint every X steps")
|
| 47 |
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
| 48 |
+
parser.add_argument("--pretrain", type=str, default=None, help="the path to the checkpoint")
|
| 49 |
parser.add_argument(
|
| 50 |
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
| 51 |
)
|
|
|
|
| 89 |
if args.finetune:
|
| 90 |
if not os.path.isdir(checkpoint_path):
|
| 91 |
os.makedirs(checkpoint_path, exist_ok=True)
|
| 92 |
+
|
| 93 |
+
file_checkpoint = os.path.join(checkpoint_path, os.path.basename(ckpt_path))
|
| 94 |
+
if not os.path.isfile(file_checkpoint):
|
| 95 |
+
shutil.copy2(ckpt_path, file_checkpoint)
|
| 96 |
+
print("copy checkpoint for finetune")
|
| 97 |
|
| 98 |
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
| 99 |
tokenizer = args.tokenizer
|
src/f5_tts/train/finetune_gradio.py
CHANGED
|
@@ -26,7 +26,7 @@ from transformers import pipeline
|
|
| 26 |
from cached_path import cached_path
|
| 27 |
from f5_tts.api import F5TTS
|
| 28 |
from f5_tts.model.utils import convert_char_to_pinyin
|
| 29 |
-
|
| 30 |
|
| 31 |
training_process = None
|
| 32 |
system = platform.system()
|
|
@@ -36,9 +36,9 @@ last_checkpoint = ""
|
|
| 36 |
last_device = ""
|
| 37 |
last_ema = None
|
| 38 |
|
| 39 |
-
|
| 40 |
-
path_data =
|
| 41 |
-
path_project_ckpts =
|
| 42 |
file_train = "src/f5_tts/train/finetune_cli.py"
|
| 43 |
|
| 44 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
@@ -46,6 +46,119 @@ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is
|
|
| 46 |
pipe = None
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# Load metadata
|
| 50 |
def get_audio_duration(audio_path):
|
| 51 |
"""Calculate the duration of an audio file."""
|
|
@@ -330,6 +443,26 @@ def start_training(
|
|
| 330 |
|
| 331 |
print(cmd)
|
| 332 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
try:
|
| 334 |
# Start the training process
|
| 335 |
training_process = subprocess.Popen(cmd, shell=True)
|
|
@@ -564,10 +697,11 @@ def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
|
|
| 564 |
|
| 565 |
new_vocal = ""
|
| 566 |
if not ch_tokenizer:
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
|
|
|
| 571 |
|
| 572 |
with open(file_vocab, "r", encoding="utf-8-sig") as f:
|
| 573 |
vocab_char_map = {}
|
|
@@ -801,11 +935,13 @@ def vocab_extend(project_name, symbols, model_type):
|
|
| 801 |
return "Symbols are okay no need to extend."
|
| 802 |
|
| 803 |
size_vocab = len(vocab)
|
| 804 |
-
vocab.pop()
|
| 805 |
for item in miss_symbols:
|
| 806 |
vocab.append(item)
|
| 807 |
|
| 808 |
-
|
|
|
|
|
|
|
| 809 |
f.write("\n".join(vocab))
|
| 810 |
|
| 811 |
if model_type == "F5-TTS":
|
|
@@ -813,14 +949,17 @@ def vocab_extend(project_name, symbols, model_type):
|
|
| 813 |
else:
|
| 814 |
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
| 815 |
|
| 816 |
-
|
|
|
|
|
|
|
|
|
|
| 817 |
os.makedirs(new_ckpt_path, exist_ok=True)
|
| 818 |
new_ckpt_file = os.path.join(new_ckpt_path, "model_1200000.pt")
|
| 819 |
|
| 820 |
-
size = expand_model_embeddings(ckpt_path, new_ckpt_file, num_new_tokens=
|
| 821 |
|
| 822 |
vocab_new = "\n".join(miss_symbols)
|
| 823 |
-
return f"vocab old size : {size_vocab}\nvocab new size : {size}\nvocab add : {
|
| 824 |
|
| 825 |
|
| 826 |
def vocab_check(project_name):
|
|
@@ -1192,7 +1331,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
| 1192 |
with gr.Row():
|
| 1193 |
ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True)
|
| 1194 |
tokenizer_file = gr.Textbox(label="Tokenizer File", value="")
|
| 1195 |
-
file_checkpoint_train = gr.Textbox(label="
|
| 1196 |
|
| 1197 |
with gr.Row():
|
| 1198 |
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
|
@@ -1219,6 +1358,42 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
| 1219 |
start_button = gr.Button("Start Training")
|
| 1220 |
stop_button = gr.Button("Stop Training", interactive=False)
|
| 1221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1222 |
txt_info_train = gr.Text(label="info", value="")
|
| 1223 |
start_button.click(
|
| 1224 |
fn=start_training,
|
|
@@ -1273,6 +1448,29 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
| 1273 |
check_finetune, inputs=[ch_finetune], outputs=[file_checkpoint_train, tokenizer_file, tokenizer_type]
|
| 1274 |
)
|
| 1275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1276 |
with gr.TabItem("test model"):
|
| 1277 |
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
| 1278 |
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
|
|
|
|
| 26 |
from cached_path import cached_path
|
| 27 |
from f5_tts.api import F5TTS
|
| 28 |
from f5_tts.model.utils import convert_char_to_pinyin
|
| 29 |
+
from importlib.resources import files
|
| 30 |
|
| 31 |
training_process = None
|
| 32 |
system = platform.system()
|
|
|
|
| 36 |
last_device = ""
|
| 37 |
last_ema = None
|
| 38 |
|
| 39 |
+
|
| 40 |
+
path_data = str(files("f5_tts").joinpath("../../data"))
|
| 41 |
+
path_project_ckpts = str(files("f5_tts").joinpath("../../ckpts"))
|
| 42 |
file_train = "src/f5_tts/train/finetune_cli.py"
|
| 43 |
|
| 44 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
|
|
| 46 |
pipe = None
|
| 47 |
|
| 48 |
|
| 49 |
+
# Save settings from a JSON file
|
| 50 |
+
def save_settings(
|
| 51 |
+
project_name,
|
| 52 |
+
exp_name,
|
| 53 |
+
learning_rate,
|
| 54 |
+
batch_size_per_gpu,
|
| 55 |
+
batch_size_type,
|
| 56 |
+
max_samples,
|
| 57 |
+
grad_accumulation_steps,
|
| 58 |
+
max_grad_norm,
|
| 59 |
+
epochs,
|
| 60 |
+
num_warmup_updates,
|
| 61 |
+
save_per_updates,
|
| 62 |
+
last_per_steps,
|
| 63 |
+
finetune,
|
| 64 |
+
file_checkpoint_train,
|
| 65 |
+
tokenizer_type,
|
| 66 |
+
tokenizer_file,
|
| 67 |
+
mixed_precision,
|
| 68 |
+
):
|
| 69 |
+
path_project = os.path.join(path_project_ckpts, project_name)
|
| 70 |
+
os.makedirs(path_project, exist_ok=True)
|
| 71 |
+
file_setting = os.path.join(path_project, "setting.json")
|
| 72 |
+
|
| 73 |
+
settings = {
|
| 74 |
+
"exp_name": exp_name,
|
| 75 |
+
"learning_rate": learning_rate,
|
| 76 |
+
"batch_size_per_gpu": batch_size_per_gpu,
|
| 77 |
+
"batch_size_type": batch_size_type,
|
| 78 |
+
"max_samples": max_samples,
|
| 79 |
+
"grad_accumulation_steps": grad_accumulation_steps,
|
| 80 |
+
"max_grad_norm": max_grad_norm,
|
| 81 |
+
"epochs": epochs,
|
| 82 |
+
"num_warmup_updates": num_warmup_updates,
|
| 83 |
+
"save_per_updates": save_per_updates,
|
| 84 |
+
"last_per_steps": last_per_steps,
|
| 85 |
+
"finetune": finetune,
|
| 86 |
+
"file_checkpoint_train": file_checkpoint_train,
|
| 87 |
+
"tokenizer_type": tokenizer_type,
|
| 88 |
+
"tokenizer_file": tokenizer_file,
|
| 89 |
+
"mixed_precision": mixed_precision,
|
| 90 |
+
}
|
| 91 |
+
with open(file_setting, "w") as f:
|
| 92 |
+
json.dump(settings, f, indent=4)
|
| 93 |
+
return "Settings saved!"
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# Load settings from a JSON file
|
| 97 |
+
def load_settings(project_name):
|
| 98 |
+
project_name = project_name.replace("_pinyin", "").replace("_char", "")
|
| 99 |
+
path_project = os.path.join(path_project_ckpts, project_name)
|
| 100 |
+
file_setting = os.path.join(path_project, "setting.json")
|
| 101 |
+
|
| 102 |
+
if not os.path.isfile(file_setting):
|
| 103 |
+
settings = {
|
| 104 |
+
"exp_name": "F5TTS_Base",
|
| 105 |
+
"learning_rate": 1e-05,
|
| 106 |
+
"batch_size_per_gpu": 1000,
|
| 107 |
+
"batch_size_type": "frame",
|
| 108 |
+
"max_samples": 64,
|
| 109 |
+
"grad_accumulation_steps": 1,
|
| 110 |
+
"max_grad_norm": 1,
|
| 111 |
+
"epochs": 100,
|
| 112 |
+
"num_warmup_updates": 2,
|
| 113 |
+
"save_per_updates": 300,
|
| 114 |
+
"last_per_steps": 200,
|
| 115 |
+
"finetune": True,
|
| 116 |
+
"file_checkpoint_train": "",
|
| 117 |
+
"tokenizer_type": "pinyin",
|
| 118 |
+
"tokenizer_file": "",
|
| 119 |
+
"mixed_precision": "none",
|
| 120 |
+
}
|
| 121 |
+
return (
|
| 122 |
+
settings["exp_name"],
|
| 123 |
+
settings["learning_rate"],
|
| 124 |
+
settings["batch_size_per_gpu"],
|
| 125 |
+
settings["batch_size_type"],
|
| 126 |
+
settings["max_samples"],
|
| 127 |
+
settings["grad_accumulation_steps"],
|
| 128 |
+
settings["max_grad_norm"],
|
| 129 |
+
settings["epochs"],
|
| 130 |
+
settings["num_warmup_updates"],
|
| 131 |
+
settings["save_per_updates"],
|
| 132 |
+
settings["last_per_steps"],
|
| 133 |
+
settings["finetune"],
|
| 134 |
+
settings["file_checkpoint_train"],
|
| 135 |
+
settings["tokenizer_type"],
|
| 136 |
+
settings["tokenizer_file"],
|
| 137 |
+
settings["mixed_precision"],
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
with open(file_setting, "r") as f:
|
| 141 |
+
settings = json.load(f)
|
| 142 |
+
return (
|
| 143 |
+
settings["exp_name"],
|
| 144 |
+
settings["learning_rate"],
|
| 145 |
+
settings["batch_size_per_gpu"],
|
| 146 |
+
settings["batch_size_type"],
|
| 147 |
+
settings["max_samples"],
|
| 148 |
+
settings["grad_accumulation_steps"],
|
| 149 |
+
settings["max_grad_norm"],
|
| 150 |
+
settings["epochs"],
|
| 151 |
+
settings["num_warmup_updates"],
|
| 152 |
+
settings["save_per_updates"],
|
| 153 |
+
settings["last_per_steps"],
|
| 154 |
+
settings["finetune"],
|
| 155 |
+
settings["file_checkpoint_train"],
|
| 156 |
+
settings["tokenizer_type"],
|
| 157 |
+
settings["tokenizer_file"],
|
| 158 |
+
settings["mixed_precision"],
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
# Load metadata
|
| 163 |
def get_audio_duration(audio_path):
|
| 164 |
"""Calculate the duration of an audio file."""
|
|
|
|
| 443 |
|
| 444 |
print(cmd)
|
| 445 |
|
| 446 |
+
save_settings(
|
| 447 |
+
dataset_name,
|
| 448 |
+
exp_name,
|
| 449 |
+
learning_rate,
|
| 450 |
+
batch_size_per_gpu,
|
| 451 |
+
batch_size_type,
|
| 452 |
+
max_samples,
|
| 453 |
+
grad_accumulation_steps,
|
| 454 |
+
max_grad_norm,
|
| 455 |
+
epochs,
|
| 456 |
+
num_warmup_updates,
|
| 457 |
+
save_per_updates,
|
| 458 |
+
last_per_steps,
|
| 459 |
+
finetune,
|
| 460 |
+
file_checkpoint_train,
|
| 461 |
+
tokenizer_type,
|
| 462 |
+
tokenizer_file,
|
| 463 |
+
mixed_precision,
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
try:
|
| 467 |
# Start the training process
|
| 468 |
training_process = subprocess.Popen(cmd, shell=True)
|
|
|
|
| 697 |
|
| 698 |
new_vocal = ""
|
| 699 |
if not ch_tokenizer:
|
| 700 |
+
if not os.path.isfile(file_vocab):
|
| 701 |
+
file_vocab_finetune = os.path.join(path_data, "Emilia_ZH_EN_pinyin/vocab.txt")
|
| 702 |
+
if not os.path.isfile(file_vocab_finetune):
|
| 703 |
+
return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!", ""
|
| 704 |
+
shutil.copy2(file_vocab_finetune, file_vocab)
|
| 705 |
|
| 706 |
with open(file_vocab, "r", encoding="utf-8-sig") as f:
|
| 707 |
vocab_char_map = {}
|
|
|
|
| 935 |
return "Symbols are okay no need to extend."
|
| 936 |
|
| 937 |
size_vocab = len(vocab)
|
| 938 |
+
vocab.pop()
|
| 939 |
for item in miss_symbols:
|
| 940 |
vocab.append(item)
|
| 941 |
|
| 942 |
+
vocab.append("")
|
| 943 |
+
|
| 944 |
+
with open(file_vocab_project, "w", encoding="utf-8") as f:
|
| 945 |
f.write("\n".join(vocab))
|
| 946 |
|
| 947 |
if model_type == "F5-TTS":
|
|
|
|
| 949 |
else:
|
| 950 |
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
| 951 |
|
| 952 |
+
vocab_size_new = len(miss_symbols)
|
| 953 |
+
|
| 954 |
+
dataset_name = name_project.replace("_pinyin", "").replace("_char", "")
|
| 955 |
+
new_ckpt_path = os.path.join(path_project_ckpts, dataset_name)
|
| 956 |
os.makedirs(new_ckpt_path, exist_ok=True)
|
| 957 |
new_ckpt_file = os.path.join(new_ckpt_path, "model_1200000.pt")
|
| 958 |
|
| 959 |
+
size = expand_model_embeddings(ckpt_path, new_ckpt_file, num_new_tokens=vocab_size_new)
|
| 960 |
|
| 961 |
vocab_new = "\n".join(miss_symbols)
|
| 962 |
+
return f"vocab old size : {size_vocab}\nvocab new size : {size}\nvocab add : {vocab_size_new}\nnew symbols :\n{vocab_new}"
|
| 963 |
|
| 964 |
|
| 965 |
def vocab_check(project_name):
|
|
|
|
| 1331 |
with gr.Row():
|
| 1332 |
ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True)
|
| 1333 |
tokenizer_file = gr.Textbox(label="Tokenizer File", value="")
|
| 1334 |
+
file_checkpoint_train = gr.Textbox(label="Path to the preetrain checkpoint ", value="")
|
| 1335 |
|
| 1336 |
with gr.Row():
|
| 1337 |
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
|
|
|
| 1358 |
start_button = gr.Button("Start Training")
|
| 1359 |
stop_button = gr.Button("Stop Training", interactive=False)
|
| 1360 |
|
| 1361 |
+
if projects_selelect is not None:
|
| 1362 |
+
(
|
| 1363 |
+
exp_namev,
|
| 1364 |
+
learning_ratev,
|
| 1365 |
+
batch_size_per_gpuv,
|
| 1366 |
+
batch_size_typev,
|
| 1367 |
+
max_samplesv,
|
| 1368 |
+
grad_accumulation_stepsv,
|
| 1369 |
+
max_grad_normv,
|
| 1370 |
+
epochsv,
|
| 1371 |
+
num_warmupv_updatesv,
|
| 1372 |
+
save_per_updatesv,
|
| 1373 |
+
last_per_stepsv,
|
| 1374 |
+
finetunev,
|
| 1375 |
+
file_checkpoint_trainv,
|
| 1376 |
+
tokenizer_typev,
|
| 1377 |
+
tokenizer_filev,
|
| 1378 |
+
mixed_precisionv,
|
| 1379 |
+
) = load_settings(projects_selelect)
|
| 1380 |
+
exp_name.value = exp_namev
|
| 1381 |
+
learning_rate.value = learning_ratev
|
| 1382 |
+
batch_size_per_gpu.value = batch_size_per_gpuv
|
| 1383 |
+
batch_size_type.value = batch_size_typev
|
| 1384 |
+
max_samples.value = max_samplesv
|
| 1385 |
+
grad_accumulation_steps.value = grad_accumulation_stepsv
|
| 1386 |
+
max_grad_norm.value = max_grad_normv
|
| 1387 |
+
epochs.value = epochsv
|
| 1388 |
+
num_warmup_updates.value = num_warmupv_updatesv
|
| 1389 |
+
save_per_updates.value = save_per_updatesv
|
| 1390 |
+
last_per_steps.value = last_per_stepsv
|
| 1391 |
+
ch_finetune.value = finetunev
|
| 1392 |
+
file_checkpoint_train.value = file_checkpoint_train
|
| 1393 |
+
tokenizer_type.value = tokenizer_typev
|
| 1394 |
+
tokenizer_file.value = tokenizer_filev
|
| 1395 |
+
mixed_precision.value = mixed_precisionv
|
| 1396 |
+
|
| 1397 |
txt_info_train = gr.Text(label="info", value="")
|
| 1398 |
start_button.click(
|
| 1399 |
fn=start_training,
|
|
|
|
| 1448 |
check_finetune, inputs=[ch_finetune], outputs=[file_checkpoint_train, tokenizer_file, tokenizer_type]
|
| 1449 |
)
|
| 1450 |
|
| 1451 |
+
cm_project.change(
|
| 1452 |
+
fn=load_settings,
|
| 1453 |
+
inputs=[cm_project],
|
| 1454 |
+
outputs=[
|
| 1455 |
+
exp_name,
|
| 1456 |
+
learning_rate,
|
| 1457 |
+
batch_size_per_gpu,
|
| 1458 |
+
batch_size_type,
|
| 1459 |
+
max_samples,
|
| 1460 |
+
grad_accumulation_steps,
|
| 1461 |
+
max_grad_norm,
|
| 1462 |
+
epochs,
|
| 1463 |
+
num_warmup_updates,
|
| 1464 |
+
save_per_updates,
|
| 1465 |
+
last_per_steps,
|
| 1466 |
+
ch_finetune,
|
| 1467 |
+
file_checkpoint_train,
|
| 1468 |
+
tokenizer_type,
|
| 1469 |
+
tokenizer_file,
|
| 1470 |
+
mixed_precision,
|
| 1471 |
+
],
|
| 1472 |
+
)
|
| 1473 |
+
|
| 1474 |
with gr.TabItem("test model"):
|
| 1475 |
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
| 1476 |
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
|