vsmolyakov commited on
Commit
faff143
·
1 Parent(s): cfbb534
Files changed (3) hide show
  1. app.py +10 -25
  2. static/index.html +36 -24
  3. static/script.js +12 -8
app.py CHANGED
@@ -1,35 +1,20 @@
1
  from fastapi import FastAPI
2
- from transformers import pipeline
3
  from fastapi.staticfiles import StaticFiles
4
  from fastapi.responses import FileResponse
5
 
6
- # Create a new FastAPI app instance
 
7
  app = FastAPI()
8
-
9
- # Initialize the text generation pipeline
10
- # This function will be able to generate text
11
- # given an input.
12
- pipe = pipeline("text2text-generation", model="google/flan-t5-small")
 
 
13
 
14
  app.mount("/", StaticFiles(directory="static", html=True), name="static")
15
 
16
  @app.get("/")
17
  def index() -> FileResponse:
18
- return FileResponse(path="/app/static/index.html", media_type="text/html")
19
-
20
- # Define a function to handle the GET request at `/generate`
21
- # The generate() function is defined as a FastAPI route that takes a
22
- # string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
23
- # containing the generated text under the key "output"
24
- @app.get("/infer_t5")
25
- def t5(text: str):
26
- """
27
- Using the text2text-generation pipeline from `transformers`, generate text
28
- from the given input text. The model used is `google/flan-t5-small`, which
29
- can be found [here](<https://huggingface.co/google/flan-t5-small>).
30
- """
31
- # Use the pipeline to generate text from the given input text
32
- output = pipe(text)
33
-
34
- # Return the generated text in a JSON response
35
- return {"output": output[0]["generated_text"]}
 
1
  from fastapi import FastAPI
 
2
  from fastapi.staticfiles import StaticFiles
3
  from fastapi.responses import FileResponse
4
 
5
+ from transformers import pipeline
6
+
7
  app = FastAPI()
8
+
9
+ pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
10
+
11
+ @app.get("/infer_t5")
12
+ def t5(input):
13
+ output = pipe_flan(input)
14
+ return {"output": output[0]["generated_text"]}
15
 
16
  app.mount("/", StaticFiles(directory="static", html=True), name="static")
17
 
18
  @app.get("/")
19
  def index() -> FileResponse:
20
+ return FileResponse(path="/app/static/index.html", media_type="text/html")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
static/index.html CHANGED
@@ -1,24 +1,36 @@
1
- <main>
2
- <section id="text-gen">
3
- <h2>Text generation using Flan T5</h2>
4
- <p>
5
- Model:
6
- <a
7
- href="https://huggingface.co/google/flan-t5-small"
8
- rel="noreferrer"
9
- target="_blank"
10
- >google/flan-t5-small
11
- </a>
12
- </p>
13
- <form class="text-gen-form">
14
- <label for="text-gen-input">Text prompt</label>
15
- <input
16
- id="text-gen-input"
17
- type="text"
18
- value="German: There are many ducks"
19
- />
20
- <button id="text-gen-submit">Submit</button>
21
- <p class="text-gen-output"></p>
22
- </form>
23
- </section>
24
- </main>
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8" />
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
6
+ <title>Fast API 🤗 Space served with Uvicorn</title>
7
+ <link rel="stylesheet" href="style.css" />
8
+ <script type="module" src="script.js"></script>
9
+ </head>
10
+ <body>
11
+ <main>
12
+ <section id="text-gen">
13
+ <h1>Text generation using Flan T5</h1>
14
+ <p>
15
+ Model:
16
+ <a
17
+ href="https://huggingface.co/google/flan-t5-small"
18
+ rel="noreferrer"
19
+ target="_blank"
20
+ >google/flan-t5-small</a
21
+ >
22
+ </p>
23
+ <form class="text-gen-form">
24
+ <label for="text-gen-input">Text prompt</label>
25
+ <input
26
+ id="text-gen-input"
27
+ type="text"
28
+ value="English: Translate How are you ?. Russian:"
29
+ />
30
+ <button id="text-gen-submit">Submit</button>
31
+ <p class="text-gen-output"></p>
32
+ </form>
33
+ </section>
34
+ </main>
35
+ </body>
36
+ </html>
static/script.js CHANGED
@@ -1,17 +1,21 @@
1
- const textGenForm = document.querySelector(".text-gen-form");
2
 
3
  const translateText = async (text) => {
4
- const inferResponse = await fetch(`infer_t5?input=${text}`);
5
- const inferJson = await inferResponse.json();
6
 
7
- return inferJson.output;
8
  };
9
 
10
- textGenForm.addEventListener("submit", async (event) => {
11
  event.preventDefault();
12
 
13
- const textGenInput = document.getElementById("text-gen-input");
14
- const textGenParagraph = document.querySelector(".text-gen-output");
15
 
16
- textGenParagraph.textContent = await translateText(textGenInput.value);
 
 
 
 
17
  });
 
1
+ const textGenForm = document.querySelector('.text-gen-form');
2
 
3
  const translateText = async (text) => {
4
+ const inferResponse = await fetch(`infer_t5?input=${text}`);
5
+ const inferJson = await inferResponse.json();
6
 
7
+ return inferJson.output;
8
  };
9
 
10
+ textGenForm.addEventListener('submit', async (event) => {
11
  event.preventDefault();
12
 
13
+ const textGenInput = document.getElementById('text-gen-input');
14
+ const textGenParagraph = document.querySelector('.text-gen-output');
15
 
16
+ try {
17
+ textGenParagraph.textContent = await translateText(textGenInput.value);
18
+ } catch (err) {
19
+ console.error(err);
20
+ }
21
  });