File size: 1,388 Bytes
1be8b6f
dc68e9c
cfbb534
 
 
dc68e9c
1be8b6f
dc68e9c
 
 
 
 
cfbb534
 
 
 
 
 
 
dc68e9c
 
 
 
cfbb534
 
dc68e9c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from fastapi import FastAPI
from transformers import pipeline
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse

# Create a new FastAPI app instance
app = FastAPI()
 
# Initialize the text generation pipeline
# This function will be able to generate text
# given an input.
pipe = pipeline("text2text-generation", model="google/flan-t5-small")

app.mount("/", StaticFiles(directory="static", html=True), name="static")

@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")

# Define a function to handle the GET request at `/generate`
# The generate() function is defined as a FastAPI route that takes a 
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response 
# containing the generated text under the key "output"
@app.get("/infer_t5")
def t5(text: str):
    """
    Using the text2text-generation pipeline from `transformers`, generate text
    from the given input text. The model used is `google/flan-t5-small`, which
    can be found [here](<https://huggingface.co/google/flan-t5-small>).
    """
    # Use the pipeline to generate text from the given input text
    output = pipe(text)
     
    # Return the generated text in a JSON response
    return {"output": output[0]["generated_text"]}