vsj0702 commited on
Commit
65948ef
·
verified ·
1 Parent(s): adbd92f

Improving readability of app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -2,16 +2,13 @@ import streamlit as st
2
  from audio_recorder_streamlit import audio_recorder
3
  from groq import Groq
4
  import os
5
- from dotenv import load_dotenv
6
  from langchain_groq import ChatGroq
7
  from langchain_core.output_parsers import StrOutputParser
8
  from langchain_core.prompts import ChatPromptTemplate
9
  import edge_tts
10
  import asyncio
11
-
12
  load_dotenv()
13
- client = Groq(api_key=os.getenv('GROQ_API_KEY'))
14
- model = 'whisper-large-v3'
15
 
16
  #Front end using streamlit
17
  def frontend():
@@ -48,6 +45,7 @@ def data_to_file(recorded_audio):
48
 
49
  #Function for audio to text
50
  def audio_to_text(audio_path):
 
51
  with open(audio_path, 'rb') as file:
52
  transcription = client.audio.translations.create(
53
  file=(audio_path, file.read()),
@@ -76,7 +74,8 @@ def answer(user_question):
76
  # Audio conversion
77
  async def convert_audio(text):
78
  filename = "output.mp3"
79
- communicte = edge_tts.Communicate(text, "en-IN-NeerjaNeural")
 
80
  await communicte.save(filename)
81
 
82
  frontend()
 
2
  from audio_recorder_streamlit import audio_recorder
3
  from groq import Groq
4
  import os
 
5
  from langchain_groq import ChatGroq
6
  from langchain_core.output_parsers import StrOutputParser
7
  from langchain_core.prompts import ChatPromptTemplate
8
  import edge_tts
9
  import asyncio
10
+ from dotenv import load_dotenv
11
  load_dotenv()
 
 
12
 
13
  #Front end using streamlit
14
  def frontend():
 
45
 
46
  #Function for audio to text
47
  def audio_to_text(audio_path):
48
+ client = Groq(api_key=os.getenv('GROQ_API_KEY'))
49
  with open(audio_path, 'rb') as file:
50
  transcription = client.audio.translations.create(
51
  file=(audio_path, file.read()),
 
74
  # Audio conversion
75
  async def convert_audio(text):
76
  filename = "output.mp3"
77
+ voice = "fr-FR-VivienneMultilingualNeural"
78
+ communicte = edge_tts.Communicate(text, voice)
79
  await communicte.save(filename)
80
 
81
  frontend()