Chat and voice feature with history retained
Browse files
app.py
CHANGED
|
@@ -13,34 +13,51 @@ load_dotenv()
|
|
| 13 |
#Front end using streamlit
|
| 14 |
def frontend():
|
| 15 |
st.title("Voice AI Demo")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
status_placeholder = st.empty()
|
| 17 |
-
status_placeholder.write("Press Mic button to start asking question")
|
|
|
|
| 18 |
recorded_audio = audio_recorder(sample_rate=8000)
|
| 19 |
text = st.chat_input()
|
| 20 |
-
|
|
|
|
| 21 |
status_placeholder.write("Getting response...")
|
| 22 |
-
response = answer(
|
| 23 |
-
status_placeholder.write("
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
status_placeholder.write("Press mic button again to ask more questions")
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
elif recorded_audio:
|
| 30 |
status_placeholder.write("Converting audio...")
|
| 31 |
data_to_file(recorded_audio)
|
| 32 |
-
status_placeholder.write("Audio conversion done.")
|
| 33 |
status_placeholder.write("Uploading audio...")
|
| 34 |
transcription = audio_to_text("temp_audio.wav")
|
| 35 |
-
status_placeholder.write("Transcription
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
st.write(
|
| 42 |
-
st.
|
| 43 |
-
|
| 44 |
|
| 45 |
#Fuction to convert audio data to audio file
|
| 46 |
def data_to_file(recorded_audio):
|
|
@@ -78,10 +95,9 @@ def answer(user_question):
|
|
| 78 |
return answer
|
| 79 |
|
| 80 |
# Audio conversion
|
| 81 |
-
async def convert_audio(text):
|
| 82 |
-
filename = "output.mp3"
|
| 83 |
voice = "fr-FR-VivienneMultilingualNeural"
|
| 84 |
-
|
| 85 |
-
await
|
| 86 |
|
| 87 |
frontend()
|
|
|
|
| 13 |
#Front end using streamlit
|
| 14 |
def frontend():
|
| 15 |
st.title("Voice AI Demo")
|
| 16 |
+
|
| 17 |
+
# Initialize session state variables
|
| 18 |
+
if "conversation" not in st.session_state:
|
| 19 |
+
st.session_state.conversation = [] # Stores (question, answer, audio_filename)
|
| 20 |
+
if "audio_count" not in st.session_state:
|
| 21 |
+
st.session_state.audio_count = 1 # Start numbering audio files from output1.wav
|
| 22 |
+
|
| 23 |
status_placeholder = st.empty()
|
| 24 |
+
status_placeholder.write("Press Mic button to start asking a question")
|
| 25 |
+
|
| 26 |
recorded_audio = audio_recorder(sample_rate=8000)
|
| 27 |
text = st.chat_input()
|
| 28 |
+
|
| 29 |
+
def process_input(user_input):
|
| 30 |
status_placeholder.write("Getting response...")
|
| 31 |
+
response = answer(user_input)
|
| 32 |
+
status_placeholder.write("Converting response to audio...")
|
| 33 |
+
|
| 34 |
+
# Generate unique audio filename
|
| 35 |
+
audio_filename = f"output{st.session_state.audio_count}.wav"
|
| 36 |
+
asyncio.run(convert_audio(response, audio_filename))
|
| 37 |
+
st.session_state.audio_count += 1 # Increment for next response
|
| 38 |
+
|
| 39 |
status_placeholder.write("Press mic button again to ask more questions")
|
| 40 |
+
|
| 41 |
+
# Append (question, answer, audio_filename) to conversation history
|
| 42 |
+
st.session_state.conversation.append((f"Q: {user_input}", f"A: {response}", audio_filename))
|
| 43 |
+
|
| 44 |
+
# Handle user input
|
| 45 |
+
if text:
|
| 46 |
+
process_input(text)
|
| 47 |
elif recorded_audio:
|
| 48 |
status_placeholder.write("Converting audio...")
|
| 49 |
data_to_file(recorded_audio)
|
|
|
|
| 50 |
status_placeholder.write("Uploading audio...")
|
| 51 |
transcription = audio_to_text("temp_audio.wav")
|
| 52 |
+
status_placeholder.write("Transcription completed.")
|
| 53 |
+
process_input(transcription)
|
| 54 |
+
|
| 55 |
+
# Display full conversation history
|
| 56 |
+
for i, (q, a, audio_file) in enumerate(st.session_state.conversation):
|
| 57 |
+
st.write(q)
|
| 58 |
+
st.write(a)
|
| 59 |
+
st.audio(audio_file, format="audio/wav", loop=False, autoplay=(i == len(st.session_state.conversation) - 1))
|
| 60 |
+
|
| 61 |
|
| 62 |
#Fuction to convert audio data to audio file
|
| 63 |
def data_to_file(recorded_audio):
|
|
|
|
| 95 |
return answer
|
| 96 |
|
| 97 |
# Audio conversion
|
| 98 |
+
async def convert_audio(text, filename):
|
|
|
|
| 99 |
voice = "fr-FR-VivienneMultilingualNeural"
|
| 100 |
+
communicate = edge_tts.Communicate(text, voice)
|
| 101 |
+
await communicate.save(filename)
|
| 102 |
|
| 103 |
frontend()
|