import os import random import json import gradio as gr import google.generativeai as genai # Configure Gemini API - For Hugging Face deployment GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") genai.configure(api_key=GEMINI_API_KEY) # Challenge database with different difficulty levels challenges = { "easy": [ { "id": "e1", "title": "Sum of Two Numbers", "description": "Write a function that takes two numbers as input and returns their sum.", "example_input": "5, 3", "example_output": "8", "test_cases": [ {"input": "5, 3", "output": "8"}, {"input": "10, -5", "output": "5"}, {"input": "0, 0", "output": "0"} ] }, { "id": "e2", "title": "Even or Odd", "description": "Write a function that determines if a number is even or odd.", "example_input": "4", "example_output": "Even", "test_cases": [ {"input": "4", "output": "Even"}, {"input": "7", "output": "Odd"}, {"input": "0", "output": "Even"} ] }, { "id": "e3", "title": "String Reversal", "description": "Write a function that reverses a string.", "example_input": "hello", "example_output": "olleh", "test_cases": [ {"input": "hello", "output": "olleh"}, {"input": "python", "output": "nohtyp"}, {"input": "a", "output": "a"} ] } ], "medium": [ { "id": "m1", "title": "Palindrome Check", "description": "Write a function that checks if a string is a palindrome (reads the same backward as forward).", "example_input": "racecar", "example_output": "True", "test_cases": [ {"input": "racecar", "output": "True"}, {"input": "hello", "output": "False"}, {"input": "A man a plan a canal Panama", "output": "True"} ] }, { "id": "m2", "title": "List Comprehension", "description": "Write a function that returns a list of all even numbers from 1 to n using list comprehension.", "example_input": "10", "example_output": "[2, 4, 6, 8, 10]", "test_cases": [ {"input": "10", "output": "[2, 4, 6, 8, 10]"}, {"input": "5", "output": "[2, 4]"}, {"input": "1", "output": "[]"} ] }, { "id": "m3", "title": "Fibonacci Sequence", "description": "Write a function that returns the nth number in the Fibonacci sequence.", "example_input": "6", "example_output": "8", "test_cases": [ {"input": "6", "output": "8"}, {"input": "1", "output": "1"}, {"input": "10", "output": "55"} ] } ], "hard": [ { "id": "h1", "title": "Anagram Check", "description": "Write a function that determines if two strings are anagrams of each other.", "example_input": "listen, silent", "example_output": "True", "test_cases": [ {"input": "listen, silent", "output": "True"}, {"input": "hello, world", "output": "False"}, {"input": "Astronomer, Moon starer", "output": "True"} ] }, { "id": "h2", "title": "Prime Number Generator", "description": "Write a function that generates all prime numbers up to n using the Sieve of Eratosthenes algorithm.", "example_input": "30", "example_output": "[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]", "test_cases": [ {"input": "30", "output": "[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]"}, {"input": "10", "output": "[2, 3, 5, 7]"}, {"input": "2", "output": "[2]"} ] }, { "id": "h3", "title": "Recursive Binary Search", "description": "Write a recursive function that performs binary search on a sorted list.", "example_input": "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 7", "example_output": "6", "test_cases": [ {"input": "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 7", "output": "6"}, {"input": "[1, 2, 3, 4, 5], 1", "output": "0"}, {"input": "[1, 3, 5, 7, 9], 4", "output": "-1"} ] } ] } # User session data user_data = { "current_challenge": None, "difficulty_level": "easy", "correct_answers": 0, "total_attempts": 0, "solution_history": [] # Store previous solutions for LLM analysis } def get_challenge(): """Get a random challenge based on the current difficulty level""" level = user_data["difficulty_level"] available_challenges = challenges[level] challenge = random.choice(available_challenges) user_data["current_challenge"] = challenge return challenge def evaluate_code_with_gemini(user_code, challenge): """Evaluate the user's code using Gemini API""" try: # Check if API key is available if not GEMINI_API_KEY: return { "test_results": [], "overall_assessment": "API Key Missing", "feedback": "The Gemini API key is not configured. Please check the Hugging Face Space settings.", "is_correct": False, "code_quality_score": 5, "algorithm_efficiency_score": 5 } # Construct the prompt for Gemini prompt = f""" Evaluate the following Python code solution for the challenge: Challenge: {challenge['title']} Description: {challenge['description']} Test Cases: {json.dumps(challenge['test_cases'], indent=2)} User's Solution: ```python {user_code} ``` Evaluate if the solution correctly solves the challenge based on the test cases. Consider: 1. Correctness (does it produce the expected output for all test cases?) 2. Efficiency (is the solution reasonably efficient?) 3. Code quality (is the code well-structured and readable?) For each test case, indicate whether the solution passes or fails. Provide a brief explanation of why it passes or fails. Finally, provide an overall assessment: is the solution correct (pass all test cases)? Return your response in the following JSON format: {{ "test_results": [ {{"test_case": "input", "expected": "output", "result": "pass/fail", "explanation": "brief explanation"}} ], "overall_assessment": "pass/fail", "feedback": "brief feedback for the user", "is_correct": true/false, "code_quality_score": 1-10, "algorithm_efficiency_score": 1-10 }} Ensure your response is valid JSON. """ # Generate content with Gemini model = genai.GenerativeModel('gemini-1.5-pro') response = model.generate_content(prompt) # Parse the response try: result = json.loads(response.text) return result except json.JSONDecodeError: # If Gemini doesn't return valid JSON, provide a fallback response return { "test_results": [], "overall_assessment": "Unable to evaluate", "feedback": "There was an issue evaluating your code. Please try again.", "is_correct": False, "code_quality_score": 5, "algorithm_efficiency_score": 5 } except Exception as e: return { "test_results": [], "overall_assessment": f"Error: {str(e)}", "feedback": "There was an error evaluating your code. Please check your syntax and try again.", "is_correct": False, "code_quality_score": 5, "algorithm_efficiency_score": 5 } def adjust_difficulty_with_llm(user_code, evaluation, challenge): """Use LLM to adjust difficulty based on code quality and approach""" # Check if API key is available if not GEMINI_API_KEY: return fallback_difficulty_adjustment(evaluation.get("is_correct", False)) # Store the solution in history solution_entry = { "challenge_id": challenge["id"], "difficulty": user_data["difficulty_level"], "code": user_code, "is_correct": evaluation.get("is_correct", False), "code_quality_score": evaluation.get("code_quality_score", 5), "algorithm_efficiency_score": evaluation.get("algorithm_efficiency_score", 5) } user_data["solution_history"].append(solution_entry) # Format the prompt for Gemini prompt = f""" Analyze the user's solution and programming skill level to recommend an appropriate difficulty level. Current Difficulty Level: {user_data["difficulty_level"]} Challenge: {challenge["title"]} Description: {challenge["description"]} User's Solution: ```python {user_code} ``` Evaluation Summary: - Correctness: {"Correct" if evaluation.get("is_correct", False) else "Incorrect"} - Code Quality Score: {evaluation.get("code_quality_score", 5)}/10 - Algorithm Efficiency Score: {evaluation.get("algorithm_efficiency_score", 5)}/10 User's History: - Total Attempts: {user_data["total_attempts"]} - Correct Solutions: {user_data["correct_answers"]} - Success Rate: {user_data["correct_answers"] / user_data["total_attempts"] if user_data["total_attempts"] > 0 else 0:.2%} Based on this information, recommend the next difficulty level (easy, medium, or hard). Consider the following factors: 1. Whether the solution is correct 2. The quality and efficiency of the code 3. The user's historical performance 4. The current difficulty level Provide your recommendation in the following JSON format: {{ "recommended_difficulty": "easy/medium/hard", "explanation": "brief explanation for the recommendation", "skill_assessment": "brief assessment of the user's skill level" }} Ensure your response is valid JSON. """ try: # Generate content with Gemini model = genai.GenerativeModel('gemini-1.5-pro') response = model.generate_content(prompt) # Parse the response try: result = json.loads(response.text) old_difficulty = user_data["difficulty_level"] user_data["difficulty_level"] = result.get("recommended_difficulty", old_difficulty) # Ensure the difficulty is valid if user_data["difficulty_level"] not in ["easy", "medium", "hard"]: user_data["difficulty_level"] = old_difficulty return result except json.JSONDecodeError: # If Gemini doesn't return valid JSON, use a fallback approach return fallback_difficulty_adjustment(evaluation.get("is_correct", False)) except Exception as e: return { "recommended_difficulty": user_data["difficulty_level"], "explanation": f"Error in difficulty adjustment: {str(e)}. Maintaining current difficulty.", "skill_assessment": "Unable to assess skill level due to an error." } def fallback_difficulty_adjustment(is_correct): """Fallback method to adjust difficulty based on success rate""" if is_correct: user_data["correct_answers"] += 1 user_data["total_attempts"] += 1 # Calculate success rate success_rate = user_data["correct_answers"] / user_data["total_attempts"] if user_data["total_attempts"] > 0 else 0 # Adjust difficulty based on success rate current_level = user_data["difficulty_level"] old_level = current_level if success_rate > 0.7 and current_level == "easy": user_data["difficulty_level"] = "medium" elif success_rate > 0.7 and current_level == "medium": user_data["difficulty_level"] = "hard" elif success_rate < 0.3 and current_level == "hard": user_data["difficulty_level"] = "medium" elif success_rate < 0.3 and current_level == "medium": user_data["difficulty_level"] = "easy" return { "recommended_difficulty": user_data["difficulty_level"], "explanation": f"Based on your success rate of {success_rate:.2%}, {'increasing' if user_data['difficulty_level'] != old_level and 'easy' in old_level else 'decreasing' if user_data['difficulty_level'] != old_level else 'maintaining'} difficulty.", "skill_assessment": "Skill assessment based on success rate only." } def handle_submission(user_code): """Handle user code submission""" if not user_data["current_challenge"]: return "Please get a challenge first." challenge = user_data["current_challenge"] # Evaluate the code evaluation = evaluate_code_with_gemini(user_code, challenge) # Track correctness is_correct = evaluation.get("is_correct", False) if is_correct: user_data["correct_answers"] += 1 user_data["total_attempts"] += 1 # Adjust difficulty using LLM difficulty_adjustment = adjust_difficulty_with_llm(user_code, evaluation, challenge) # Format response response = f"## Evaluation Results\n\n" response += f"**Challenge:** {challenge['title']}\n\n" if "test_results" in evaluation and evaluation["test_results"]: response += "**Test Results:**\n" for test in evaluation["test_results"]: result = test.get("result", "N/A") input_val = test.get("test_case", "N/A") expected = test.get("expected", "N/A") explanation = test.get("explanation", "N/A") response += f"- Input: `{input_val}`, Expected: `{expected}`, Result: **{result}**\n" response += f" {explanation}\n\n" response += f"**Overall Assessment:** {evaluation.get('overall_assessment', 'N/A')}\n\n" response += f"**Code Quality:** {evaluation.get('code_quality_score', 'N/A')}/10\n" response += f"**Algorithm Efficiency:** {evaluation.get('algorithm_efficiency_score', 'N/A')}/10\n\n" response += f"**Feedback:** {evaluation.get('feedback', 'N/A')}\n\n" response += f"**Difficulty Adjustment:**\n" response += f"- New Difficulty: {difficulty_adjustment.get('recommended_difficulty', user_data['difficulty_level'])}\n" response += f"- Reason: {difficulty_adjustment.get('explanation', 'N/A')}\n" response += f"- Skill Assessment: {difficulty_adjustment.get('skill_assessment', 'N/A')}\n" return response def display_challenge(): """Get and display a challenge""" challenge = get_challenge() response = f"## {challenge['title']}\n\n" response += f"**Difficulty:** {user_data['difficulty_level']}\n\n" response += f"**Description:** {challenge['description']}\n\n" response += f"**Example Input:** {challenge['example_input']}\n" response += f"**Example Output:** {challenge['example_output']}\n\n" response += "Write your solution in Python and submit it when ready." return response def reset_session(): """Reset the user session""" user_data["current_challenge"] = None user_data["difficulty_level"] = "easy" user_data["correct_answers"] = 0 user_data["total_attempts"] = 0 user_data["solution_history"] = [] return "Session reset. Your progress has been cleared and difficulty has been reset to easy." def check_api_key(): """Check if the API key is properly configured""" if not GEMINI_API_KEY: return gr.Markdown(""" ## ⚠️ API Key Not Found The Gemini API key is not configured. Please add it in the Space secrets with the name `GEMINI_API_KEY`. ### How to add a secret: 1. Go to the Settings tab on your Space 2. Navigate to the "Repository secrets" section 3. Add a new secret with the name `GEMINI_API_KEY` and your API key as the value 4. Restart the Space """) else: return gr.Markdown("# LLM-Adaptive Python Coding Challenge\nThis application provides Python coding challenges that adapt to your skill level using AI.") # Set up the Gradio interface with gr.Blocks(title="LLM-Adaptive Python Coding Challenge", theme=gr.themes.Base()) as app: header = gr.Markdown("Checking API configuration...") with gr.Row(): with gr.Column(scale=2): challenge_display = gr.Markdown("Click 'Get Challenge' to start") with gr.Row(): get_challenge_btn = gr.Button("Get Challenge") reset_btn = gr.Button("Reset Progress") code_input = gr.Code(language="python", lines=15, label="Your Solution") submit_btn = gr.Button("Submit Solution") with gr.Column(scale=3): result_display = gr.Markdown("Results will appear here") gr.Markdown("### How it works") gr.Markdown("1. Get a challenge by clicking 'Get Challenge'") gr.Markdown("2. Write your solution in Python") gr.Markdown("3. Submit your solution for evaluation") gr.Markdown("4. The AI will analyze your code and adjust the difficulty based on your coding style, efficiency, and correctness") # Check API key on load app.load(check_api_key, [], [header]) get_challenge_btn.click(display_challenge, inputs=[], outputs=challenge_display) reset_btn.click(reset_session, inputs=[], outputs=result_display) submit_btn.click(handle_submission, inputs=[code_input], outputs=result_display) # Launch the app if __name__ == "__main__": app.launch()