Spaces:
Sleeping
Sleeping
File size: 4,327 Bytes
2d0a0f5 5dca0b0 e88497a 2d0a0f5 e88497a 5dca0b0 e88497a 5dca0b0 e88497a 5dca0b0 e88497a 5dca0b0 e88497a 5dca0b0 e88497a 5dca0b0 e88497a b9a925b e88497a b9a925b e88497a b9a925b e88497a b9a925b e88497a 2d0a0f5 86eb1ac e88497a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
from transformers import AutoTokenizer
import ast
from collections import Counter
import re
import plotly.graph_objs as go
model_path = "models/"
# Available models
MODELS = ["Meta-Llama-3.1-8B", "gemma-2b"]
def create_vertical_histogram(data, title):
labels, values = zip(*data) if data else ([], [])
fig = go.Figure(go.Bar(
x=labels,
y=values
))
fig.update_layout(
title=title,
xaxis_title="Item",
yaxis_title="Count",
height=400,
xaxis=dict(tickangle=-45)
)
return fig
def process_input(input_type, input_value, model_name):
tokenizer = AutoTokenizer.from_pretrained(model_path + model_name)
if input_type == "Text":
text = input_value
elif input_type == "Token IDs":
try:
token_ids = ast.literal_eval(input_value)
text = tokenizer.decode(token_ids)
except ValueError:
return "Error", "Invalid input", "", "", "", None, None, None
character_count = len(text)
word_count = len(text.split())
token_ids = tokenizer.encode(text, add_special_tokens=True)
tokens = tokenizer.convert_ids_to_tokens(token_ids)
space_count = sum(1 for token in tokens if token == 'β')
special_char_count = sum(1 for token in tokens if not token.isalnum() and token != 'β')
words = re.findall(r'\b\w+\b', text.lower())
special_chars = re.findall(r'[^\w\s]', text)
numbers = re.findall(r'\d+', text)
most_common_words = Counter(words).most_common(10)
most_common_special_chars = Counter(special_chars).most_common(10)
most_common_numbers = Counter(numbers).most_common(10)
words_hist = create_vertical_histogram(most_common_words, "Most Common Words")
special_chars_hist = create_vertical_histogram(most_common_special_chars, "Most Common Special Characters")
numbers_hist = create_vertical_histogram(most_common_numbers, "Most Common Numbers")
analysis = f"Token count: {len(tokens)}\n"
analysis += f"Character count: {character_count}\n"
analysis += f"Word count: {word_count}\n"
analysis += f"Space tokens: {space_count}\n"
analysis += f"Special character tokens: {special_char_count}\n"
analysis += f"Other tokens: {len(tokens) - space_count - special_char_count}"
return analysis, " ".join(tokens), str(token_ids), words_hist, special_chars_hist, numbers_hist
def text_example():
return "Hello, world! This is an example text input for tokenization."
def token_ids_example():
return "[128000, 9906, 11, 1917, 0, 1115, 374, 459, 3187, 1495, 1988, 369, 4037, 2065, 13]"
with gr.Blocks() as iface:
gr.Markdown("# LLM Tokenization - Convert Text to tokens and vice versa!")
gr.Markdown("Enter text or token IDs and select a model to see the results, including word count, token analysis, and histograms of most common elements.")
with gr.Row():
input_type = gr.Radio(["Text", "Token IDs"], label="Input Type", value="Text")
model_name = gr.Dropdown(choices=MODELS, label="Select Model",value=MODELS[0])
input_text = gr.Textbox(lines=5, label="Input")
with gr.Row():
text_example_button = gr.Button("Load Text Example")
token_ids_example_button = gr.Button("Load Token IDs Example")
submit_button = gr.Button("Process")
analysis_output = gr.Textbox(label="Analysis", lines=6)
tokens_output = gr.Textbox(label="Tokens", lines=3)
token_ids_output = gr.Textbox(label="Token IDs", lines=2)
with gr.Row():
words_plot = gr.Plot(label="Most Common Words")
special_chars_plot = gr.Plot(label="Most Common Special Characters")
numbers_plot = gr.Plot(label="Most Common Numbers")
text_example_button.click(
lambda: (text_example(), "Text"),
outputs=[input_text, input_type]
)
token_ids_example_button.click(
lambda: (token_ids_example(), "Token IDs"),
outputs=[input_text, input_type]
)
submit_button.click(
process_input,
inputs=[input_type, input_text, model_name],
outputs=[analysis_output, tokens_output, token_ids_output, words_plot, special_chars_plot, numbers_plot]
)
if __name__ == "__main__":
iface.launch() |