Spaces:
Sleeping
Sleeping
Krishnan Palanisami
commited on
Delete app.py
Browse files
app.py
DELETED
@@ -1,575 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import wikipedia
|
3 |
-
from haystack.document_stores import InMemoryDocumentStore
|
4 |
-
from haystack.utils import clean_wiki_text, convert_files_to_docs
|
5 |
-
from haystack.nodes import TfidfRetriever, FARMReader
|
6 |
-
from haystack.pipelines import ExtractiveQAPipeline
|
7 |
-
from main import print_qa, QuestionGenerator
|
8 |
-
import en_core_web_sm
|
9 |
-
import json
|
10 |
-
import numpy as np
|
11 |
-
import random
|
12 |
-
import re
|
13 |
-
import torch
|
14 |
-
from transformers import (
|
15 |
-
AutoTokenizer,
|
16 |
-
AutoModelForSeq2SeqLM,
|
17 |
-
AutoModelForSequenceClassification,
|
18 |
-
)
|
19 |
-
from typing import Any, List, Mapping, Tuple
|
20 |
-
|
21 |
-
|
22 |
-
class QuestionGenerator:
|
23 |
-
"""A transformer-based NLP system for generating reading comprehension-style questions from
|
24 |
-
texts. It can generate full sentence questions, multiple choice questions, or a mix of the
|
25 |
-
two styles.
|
26 |
-
|
27 |
-
To filter out low quality questions, questions are assigned a score and ranked once they have
|
28 |
-
been generated. Only the top k questions will be returned. This behaviour can be turned off
|
29 |
-
by setting use_evaluator=False.
|
30 |
-
"""
|
31 |
-
|
32 |
-
def __init__(self) -> None:
|
33 |
-
|
34 |
-
QG_PRETRAINED = "iarfmoose/t5-base-question-generator"
|
35 |
-
self.ANSWER_TOKEN = "<answer>"
|
36 |
-
self.CONTEXT_TOKEN = "<context>"
|
37 |
-
self.SEQ_LENGTH = 512
|
38 |
-
|
39 |
-
self.device = torch.device(
|
40 |
-
"cuda" if torch.cuda.is_available() else "cpu")
|
41 |
-
|
42 |
-
self.qg_tokenizer = AutoTokenizer.from_pretrained(
|
43 |
-
QG_PRETRAINED, use_fast=False)
|
44 |
-
self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(QG_PRETRAINED)
|
45 |
-
self.qg_model.to(self.device)
|
46 |
-
self.qg_model.eval()
|
47 |
-
|
48 |
-
self.qa_evaluator = QAEvaluator()
|
49 |
-
|
50 |
-
def generate(
|
51 |
-
self,
|
52 |
-
article: str,
|
53 |
-
use_evaluator: bool = True,
|
54 |
-
num_questions: bool = None,
|
55 |
-
answer_style: str = "all"
|
56 |
-
) -> List:
|
57 |
-
"""Takes an article and generates a set of question and answer pairs. If use_evaluator
|
58 |
-
is True then QA pairs will be ranked and filtered based on their quality. answer_style
|
59 |
-
should selected from ["all", "sentences", "multiple_choice"].
|
60 |
-
"""
|
61 |
-
|
62 |
-
print("Generating questions...\n")
|
63 |
-
|
64 |
-
qg_inputs, qg_answers = self.generate_qg_inputs(article, answer_style)
|
65 |
-
generated_questions = self.generate_questions_from_inputs(qg_inputs)
|
66 |
-
|
67 |
-
message = "{} questions doesn't match {} answers".format(
|
68 |
-
len(generated_questions), len(qg_answers)
|
69 |
-
)
|
70 |
-
assert len(generated_questions) == len(qg_answers), message
|
71 |
-
|
72 |
-
if use_evaluator:
|
73 |
-
print("Evaluating QA pairs...\n")
|
74 |
-
encoded_qa_pairs = self.qa_evaluator.encode_qa_pairs(
|
75 |
-
generated_questions, qg_answers
|
76 |
-
)
|
77 |
-
scores = self.qa_evaluator.get_scores(encoded_qa_pairs)
|
78 |
-
|
79 |
-
if num_questions:
|
80 |
-
qa_list = self._get_ranked_qa_pairs(
|
81 |
-
generated_questions, qg_answers, scores, num_questions
|
82 |
-
)
|
83 |
-
else:
|
84 |
-
qa_list = self._get_ranked_qa_pairs(
|
85 |
-
generated_questions, qg_answers, scores
|
86 |
-
)
|
87 |
-
|
88 |
-
else:
|
89 |
-
print("Skipping evaluation step.\n")
|
90 |
-
qa_list = self._get_all_qa_pairs(generated_questions, qg_answers)
|
91 |
-
|
92 |
-
return qa_list
|
93 |
-
|
94 |
-
def generate_qg_inputs(self, text: str, answer_style: str) -> Tuple[List[str], List[str]]:
|
95 |
-
"""Given a text, returns a list of model inputs and a list of corresponding answers.
|
96 |
-
Model inputs take the form "answer_token <answer text> context_token <context text>" where
|
97 |
-
the answer is a string extracted from the text, and the context is the wider text surrounding
|
98 |
-
the context.
|
99 |
-
"""
|
100 |
-
|
101 |
-
VALID_ANSWER_STYLES = ["all", "sentences", "multiple_choice"]
|
102 |
-
|
103 |
-
if answer_style not in VALID_ANSWER_STYLES:
|
104 |
-
raise ValueError(
|
105 |
-
"Invalid answer style {}. Please choose from {}".format(
|
106 |
-
answer_style, VALID_ANSWER_STYLES
|
107 |
-
)
|
108 |
-
)
|
109 |
-
|
110 |
-
inputs = []
|
111 |
-
answers = []
|
112 |
-
|
113 |
-
if answer_style == "sentences" or answer_style == "all":
|
114 |
-
segments = self._split_into_segments(text)
|
115 |
-
|
116 |
-
for segment in segments:
|
117 |
-
sentences = self._split_text(segment)
|
118 |
-
prepped_inputs, prepped_answers = self._prepare_qg_inputs(
|
119 |
-
sentences, segment
|
120 |
-
)
|
121 |
-
inputs.extend(prepped_inputs)
|
122 |
-
answers.extend(prepped_answers)
|
123 |
-
|
124 |
-
if answer_style == "multiple_choice" or answer_style == "all":
|
125 |
-
sentences = self._split_text(text)
|
126 |
-
prepped_inputs, prepped_answers = self._prepare_qg_inputs_MC(
|
127 |
-
sentences
|
128 |
-
)
|
129 |
-
inputs.extend(prepped_inputs)
|
130 |
-
answers.extend(prepped_answers)
|
131 |
-
|
132 |
-
return inputs, answers
|
133 |
-
|
134 |
-
def generate_questions_from_inputs(self, qg_inputs: List) -> List[str]:
|
135 |
-
"""Given a list of concatenated answers and contexts, with the form:
|
136 |
-
"answer_token <answer text> context_token <context text>", generates a list of
|
137 |
-
questions.
|
138 |
-
"""
|
139 |
-
generated_questions = []
|
140 |
-
|
141 |
-
for qg_input in qg_inputs:
|
142 |
-
question = self._generate_question(qg_input)
|
143 |
-
generated_questions.append(question)
|
144 |
-
|
145 |
-
return generated_questions
|
146 |
-
|
147 |
-
def _split_text(self, text: str) -> List[str]:
|
148 |
-
"""Splits the text into sentences, and attempts to split or truncate long sentences."""
|
149 |
-
MAX_SENTENCE_LEN = 128
|
150 |
-
sentences = re.findall(".*?[.!\?]", text)
|
151 |
-
cut_sentences = []
|
152 |
-
|
153 |
-
for sentence in sentences:
|
154 |
-
if len(sentence) > MAX_SENTENCE_LEN:
|
155 |
-
cut_sentences.extend(re.split("[,;:)]", sentence))
|
156 |
-
|
157 |
-
# remove useless post-quote sentence fragments
|
158 |
-
cut_sentences = [s for s in sentences if len(s.split(" ")) > 5]
|
159 |
-
sentences = sentences + cut_sentences
|
160 |
-
|
161 |
-
return list(set([s.strip(" ") for s in sentences]))
|
162 |
-
|
163 |
-
def _split_into_segments(self, text: str) -> List[str]:
|
164 |
-
"""Splits a long text into segments short enough to be input into the transformer network.
|
165 |
-
Segments are used as context for question generation.
|
166 |
-
"""
|
167 |
-
MAX_TOKENS = 490
|
168 |
-
paragraphs = text.split("\n")
|
169 |
-
tokenized_paragraphs = [
|
170 |
-
self.qg_tokenizer(p)["input_ids"] for p in paragraphs if len(p) > 0
|
171 |
-
]
|
172 |
-
segments = []
|
173 |
-
|
174 |
-
while len(tokenized_paragraphs) > 0:
|
175 |
-
segment = []
|
176 |
-
|
177 |
-
while len(segment) < MAX_TOKENS and len(tokenized_paragraphs) > 0:
|
178 |
-
paragraph = tokenized_paragraphs.pop(0)
|
179 |
-
segment.extend(paragraph)
|
180 |
-
segments.append(segment)
|
181 |
-
|
182 |
-
return [self.qg_tokenizer.decode(s, skip_special_tokens=True) for s in segments]
|
183 |
-
|
184 |
-
def _prepare_qg_inputs(
|
185 |
-
self,
|
186 |
-
sentences: List[str],
|
187 |
-
text: str
|
188 |
-
) -> Tuple[List[str], List[str]]:
|
189 |
-
"""Uses sentences as answers and the text as context. Returns a tuple of (model inputs, answers).
|
190 |
-
Model inputs are "answer_token <answer text> context_token <context text>"
|
191 |
-
"""
|
192 |
-
inputs = []
|
193 |
-
answers = []
|
194 |
-
|
195 |
-
for sentence in sentences:
|
196 |
-
qg_input = f"{self.ANSWER_TOKEN} {sentence} {self.CONTEXT_TOKEN} {text}"
|
197 |
-
inputs.append(qg_input)
|
198 |
-
answers.append(sentence)
|
199 |
-
|
200 |
-
return inputs, answers
|
201 |
-
|
202 |
-
def _prepare_qg_inputs_MC(self, sentences: List[str]) -> Tuple[List[str], List[str]]:
|
203 |
-
"""Performs NER on the text, and uses extracted entities are candidate answers for multiple-choice
|
204 |
-
questions. Sentences are used as context, and entities as answers. Returns a tuple of (model inputs, answers).
|
205 |
-
Model inputs are "answer_token <answer text> context_token <context text>"
|
206 |
-
"""
|
207 |
-
spacy_nlp = en_core_web_sm.load()
|
208 |
-
docs = list(spacy_nlp.pipe(sentences, disable=["parser"]))
|
209 |
-
inputs_from_text = []
|
210 |
-
answers_from_text = []
|
211 |
-
|
212 |
-
for doc, sentence in zip(docs, sentences):
|
213 |
-
entities = doc.ents
|
214 |
-
if entities:
|
215 |
-
|
216 |
-
for entity in entities:
|
217 |
-
qg_input = f"{self.ANSWER_TOKEN} {entity} {self.CONTEXT_TOKEN} {sentence}"
|
218 |
-
answers = self._get_MC_answers(entity, docs)
|
219 |
-
inputs_from_text.append(qg_input)
|
220 |
-
answers_from_text.append(answers)
|
221 |
-
|
222 |
-
return inputs_from_text, answers_from_text
|
223 |
-
|
224 |
-
def _get_MC_answers(self, correct_answer: Any, docs: Any) -> List[Mapping[str, Any]]:
|
225 |
-
"""Finds a set of alternative answers for a multiple-choice question. Will attempt to find
|
226 |
-
alternatives of the same entity type as correct_answer if possible.
|
227 |
-
"""
|
228 |
-
entities = []
|
229 |
-
|
230 |
-
for doc in docs:
|
231 |
-
entities.extend([{"text": e.text, "label_": e.label_} for e in doc.ents])
|
232 |
-
|
233 |
-
# Remove duplicate elements and convert to a list
|
234 |
-
entities_json = [json.dumps(kv) for kv in entities]
|
235 |
-
pool = sorted(set(entities_json)) # Convert pool to a sorted list
|
236 |
-
num_choices = min(4, len(pool)) - 1 # Number of choices to make
|
237 |
-
|
238 |
-
# Add the correct answer
|
239 |
-
final_choices = []
|
240 |
-
correct_label = correct_answer.label_
|
241 |
-
final_choices.append({"answer": correct_answer.text, "correct": True})
|
242 |
-
|
243 |
-
# Remove the correct answer from the pool
|
244 |
-
pool = [e for e in pool if e != json.dumps({"text": correct_answer.text, "label_": correct_answer.label_})]
|
245 |
-
|
246 |
-
# Find answers with the same NER label
|
247 |
-
matches = [e for e in pool if correct_label in e]
|
248 |
-
|
249 |
-
# If not enough matches, add other random answers
|
250 |
-
if len(matches) < num_choices:
|
251 |
-
choices = matches
|
252 |
-
remaining_choices = random.sample(sorted(pool), num_choices - len(choices))
|
253 |
-
choices.extend(remaining_choices)
|
254 |
-
else:
|
255 |
-
choices = random.sample(sorted(matches), num_choices)
|
256 |
-
|
257 |
-
choices = [json.loads(s) for s in choices]
|
258 |
-
|
259 |
-
for choice in choices:
|
260 |
-
final_choices.append({"answer": choice["text"], "correct": False})
|
261 |
-
|
262 |
-
random.shuffle(final_choices)
|
263 |
-
return final_choices
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
# def _get_MC_answers(self, correct_answer: Any, docs: Any) -> List[Mapping[str, Any]]:
|
268 |
-
# """Finds a set of alternative answers for a multiple-choice question. Will attempt to find
|
269 |
-
# alternatives of the same entity type as correct_answer if possible.
|
270 |
-
# """
|
271 |
-
# entities = []
|
272 |
-
|
273 |
-
# for doc in docs:
|
274 |
-
# entities.extend([{"text": e.text, "label_": e.label_}
|
275 |
-
# for e in doc.ents])
|
276 |
-
|
277 |
-
# # remove duplicate elements
|
278 |
-
# entities_json = [json.dumps(kv) for kv in entities]
|
279 |
-
# pool = set(entities_json)
|
280 |
-
# num_choices = (
|
281 |
-
# min(4, len(pool)) - 1
|
282 |
-
# ) # -1 because we already have the correct answer
|
283 |
-
|
284 |
-
# # add the correct answer
|
285 |
-
# final_choices = []
|
286 |
-
# correct_label = correct_answer.label_
|
287 |
-
# final_choices.append({"answer": correct_answer.text, "correct": True})
|
288 |
-
# pool.remove(
|
289 |
-
# json.dumps({"text": correct_answer.text,
|
290 |
-
# "label_": correct_answer.label_})
|
291 |
-
# )
|
292 |
-
|
293 |
-
# # find answers with the same NER label
|
294 |
-
# matches = [e for e in pool if correct_label in e]
|
295 |
-
|
296 |
-
# # if we don't have enough then add some other random answers
|
297 |
-
# if len(matches) < num_choices:
|
298 |
-
# choices = matches
|
299 |
-
# pool = pool.difference(set(choices))
|
300 |
-
# choices.extend(random.sample(pool, num_choices - len(choices)))
|
301 |
-
# else:
|
302 |
-
# choices = random.sample(matches, num_choices)
|
303 |
-
|
304 |
-
# choices = [json.loads(s) for s in choices]
|
305 |
-
|
306 |
-
# for choice in choices:
|
307 |
-
# final_choices.append({"answer": choice["text"], "correct": False})
|
308 |
-
|
309 |
-
# random.shuffle(final_choices)
|
310 |
-
# return final_choices
|
311 |
-
|
312 |
-
@torch.no_grad()
|
313 |
-
def _generate_question(self, qg_input: str) -> str:
|
314 |
-
"""Takes qg_input which is the concatenated answer and context, and uses it to generate
|
315 |
-
a question sentence. The generated question is decoded and then returned.
|
316 |
-
"""
|
317 |
-
encoded_input = self._encode_qg_input(qg_input)
|
318 |
-
output = self.qg_model.generate(input_ids=encoded_input["input_ids"])
|
319 |
-
question = self.qg_tokenizer.decode(
|
320 |
-
output[0],
|
321 |
-
skip_special_tokens=True
|
322 |
-
)
|
323 |
-
return question
|
324 |
-
|
325 |
-
def _encode_qg_input(self, qg_input: str) -> torch.tensor:
|
326 |
-
"""Tokenizes a string and returns a tensor of input ids corresponding to indices of tokens in
|
327 |
-
the vocab.
|
328 |
-
"""
|
329 |
-
return self.qg_tokenizer(
|
330 |
-
qg_input,
|
331 |
-
padding='max_length',
|
332 |
-
max_length=self.SEQ_LENGTH,
|
333 |
-
truncation=True,
|
334 |
-
return_tensors="pt",
|
335 |
-
).to(self.device)
|
336 |
-
|
337 |
-
def _get_ranked_qa_pairs(
|
338 |
-
self, generated_questions: List[str], qg_answers: List[str], scores, num_questions: int = 10
|
339 |
-
) -> List[Mapping[str, str]]:
|
340 |
-
"""Ranks generated questions according to scores, and returns the top num_questions examples.
|
341 |
-
"""
|
342 |
-
if num_questions > len(scores):
|
343 |
-
num_questions = len(scores)
|
344 |
-
print((
|
345 |
-
f"\nWas only able to generate {num_questions} questions.",
|
346 |
-
"For more questions, please input a longer text.")
|
347 |
-
)
|
348 |
-
|
349 |
-
qa_list = []
|
350 |
-
|
351 |
-
for i in range(num_questions):
|
352 |
-
index = scores[i]
|
353 |
-
qa = {
|
354 |
-
"question": generated_questions[index].split("?")[0] + "?",
|
355 |
-
"answer": qg_answers[index]
|
356 |
-
}
|
357 |
-
qa_list.append(qa)
|
358 |
-
|
359 |
-
return qa_list
|
360 |
-
|
361 |
-
def _get_all_qa_pairs(self, generated_questions: List[str], qg_answers: List[str]):
|
362 |
-
"""Formats question and answer pairs without ranking or filtering."""
|
363 |
-
qa_list = []
|
364 |
-
|
365 |
-
for question, answer in zip(generated_questions, qg_answers):
|
366 |
-
qa = {
|
367 |
-
"question": question.split("?")[0] + "?",
|
368 |
-
"answer": answer
|
369 |
-
}
|
370 |
-
qa_list.append(qa)
|
371 |
-
|
372 |
-
return qa_list
|
373 |
-
|
374 |
-
|
375 |
-
class QAEvaluator:
|
376 |
-
"""Wrapper for a transformer model which evaluates the quality of question-answer pairs.
|
377 |
-
Given a QA pair, the model will generate a score. Scores can be used to rank and filter
|
378 |
-
QA pairs.
|
379 |
-
"""
|
380 |
-
|
381 |
-
def __init__(self) -> None:
|
382 |
-
|
383 |
-
QAE_PRETRAINED = "iarfmoose/bert-base-cased-qa-evaluator"
|
384 |
-
self.SEQ_LENGTH = 512
|
385 |
-
|
386 |
-
self.device = torch.device(
|
387 |
-
"cuda" if torch.cuda.is_available() else "cpu")
|
388 |
-
|
389 |
-
self.qae_tokenizer = AutoTokenizer.from_pretrained(QAE_PRETRAINED)
|
390 |
-
self.qae_model = AutoModelForSequenceClassification.from_pretrained(
|
391 |
-
QAE_PRETRAINED
|
392 |
-
)
|
393 |
-
self.qae_model.to(self.device)
|
394 |
-
self.qae_model.eval()
|
395 |
-
|
396 |
-
def encode_qa_pairs(self, questions: List[str], answers: List[str]) -> List[torch.tensor]:
|
397 |
-
"""Takes a list of questions and a list of answers and encodes them as a list of tensors."""
|
398 |
-
encoded_pairs = []
|
399 |
-
|
400 |
-
for question, answer in zip(questions, answers):
|
401 |
-
encoded_qa = self._encode_qa(question, answer)
|
402 |
-
encoded_pairs.append(encoded_qa.to(self.device))
|
403 |
-
|
404 |
-
return encoded_pairs
|
405 |
-
|
406 |
-
def get_scores(self, encoded_qa_pairs: List[torch.tensor]) -> List[float]:
|
407 |
-
"""Generates scores for a list of encoded QA pairs."""
|
408 |
-
scores = {}
|
409 |
-
|
410 |
-
for i in range(len(encoded_qa_pairs)):
|
411 |
-
scores[i] = self._evaluate_qa(encoded_qa_pairs[i])
|
412 |
-
|
413 |
-
return [
|
414 |
-
k for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True)
|
415 |
-
]
|
416 |
-
|
417 |
-
def _encode_qa(self, question: str, answer: str) -> torch.tensor:
|
418 |
-
"""Concatenates a question and answer, and then tokenizes them. Returns a tensor of
|
419 |
-
input ids corresponding to indices in the vocab.
|
420 |
-
"""
|
421 |
-
if type(answer) is list:
|
422 |
-
for a in answer:
|
423 |
-
if a["correct"]:
|
424 |
-
correct_answer = a["answer"]
|
425 |
-
else:
|
426 |
-
correct_answer = answer
|
427 |
-
|
428 |
-
return self.qae_tokenizer(
|
429 |
-
text=question,
|
430 |
-
text_pair=correct_answer,
|
431 |
-
padding="max_length",
|
432 |
-
max_length=self.SEQ_LENGTH,
|
433 |
-
truncation=True,
|
434 |
-
return_tensors="pt",
|
435 |
-
)
|
436 |
-
|
437 |
-
@torch.no_grad()
|
438 |
-
def _evaluate_qa(self, encoded_qa_pair: torch.tensor) -> float:
|
439 |
-
"""Takes an encoded QA pair and returns a score."""
|
440 |
-
output = self.qae_model(**encoded_qa_pair)
|
441 |
-
return output[0][0][1]
|
442 |
-
|
443 |
-
|
444 |
-
def print_qa(qa_list: List[Mapping[str, str]], show_answers: bool = True) -> None:
|
445 |
-
"""Formats and prints a list of generated questions and answers."""
|
446 |
-
|
447 |
-
for i in range(len(qa_list)):
|
448 |
-
# wider space for 2 digit q nums
|
449 |
-
space = " " * int(np.where(i < 9, 3, 4))
|
450 |
-
|
451 |
-
print(f"{i + 1}) Q: {qa_list[i]['question']}")
|
452 |
-
|
453 |
-
answer = qa_list[i]["answer"]
|
454 |
-
|
455 |
-
# print a list of multiple choice answers
|
456 |
-
if type(answer) is list:
|
457 |
-
|
458 |
-
if show_answers:
|
459 |
-
print(
|
460 |
-
f"{space}A: 1. {answer[0]['answer']} "
|
461 |
-
f"{np.where(answer[0]['correct'], '(correct)', '')}"
|
462 |
-
)
|
463 |
-
for j in range(1, len(answer)):
|
464 |
-
print(
|
465 |
-
f"{space + ' '}{j + 1}. {answer[j]['answer']} "
|
466 |
-
f"{np.where(answer[j]['correct']==True,'(correct)', '')}"
|
467 |
-
)
|
468 |
-
|
469 |
-
else:
|
470 |
-
print(f"{space}A: 1. {answer[0]['answer']}")
|
471 |
-
for j in range(1, len(answer)):
|
472 |
-
print(f"{space + ' '}{j + 1}. {answer[j]['answer']}")
|
473 |
-
|
474 |
-
print("")
|
475 |
-
|
476 |
-
# print full sentence answers
|
477 |
-
else:
|
478 |
-
if show_answers:
|
479 |
-
print(f"{space}A: {answer}\n")
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
def main():
|
485 |
-
# Set the Streamlit app title
|
486 |
-
st.title("Question Generation using Haystack and Streamlit")
|
487 |
-
|
488 |
-
# Select the input type
|
489 |
-
inputs = ["Input Paragraph", "Wikipedia Examples"]
|
490 |
-
input_type = st.selectbox("Select an input type:", inputs)
|
491 |
-
|
492 |
-
# Initialize wiki_text as an empty string
|
493 |
-
wiki_text = ""
|
494 |
-
|
495 |
-
# Handle different input types
|
496 |
-
if input_type == "Input Paragraph":
|
497 |
-
# Allow user to input text paragraph
|
498 |
-
wiki_text = st.text_area("Input paragraph:", height=200)
|
499 |
-
|
500 |
-
elif input_type == "Wikipedia Examples":
|
501 |
-
# Define topics for selection
|
502 |
-
topics = ["Deep Learning", "Machine Learning"]
|
503 |
-
selected_topic = st.selectbox("Select a topic:", topics)
|
504 |
-
|
505 |
-
# Retrieve Wikipedia content based on the selected topic
|
506 |
-
if selected_topic:
|
507 |
-
wiki = wikipedia.page(selected_topic)
|
508 |
-
wiki_text = wiki.content
|
509 |
-
|
510 |
-
# Display the retrieved Wikipedia content (optional)
|
511 |
-
st.text_area("Retrieved Wikipedia content:", wiki_text, height=200)
|
512 |
-
|
513 |
-
# Preprocess the input text
|
514 |
-
wiki_text = clean_wiki_text(wiki_text)
|
515 |
-
|
516 |
-
# Allow user to specify the number of questions to generate
|
517 |
-
num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
|
518 |
-
|
519 |
-
# Allow user to specify the model to use
|
520 |
-
model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2", "deepset/flan-t5-xl-squad2"]
|
521 |
-
model_name = st.selectbox("Select model:", model_options)
|
522 |
-
|
523 |
-
# Button to generate questions
|
524 |
-
if st.button("Generate Questions"):
|
525 |
-
document_store = InMemoryDocumentStore()
|
526 |
-
|
527 |
-
# Convert the preprocessed text into a document
|
528 |
-
document = {"content": wiki_text}
|
529 |
-
document_store.write_documents([document])
|
530 |
-
|
531 |
-
# Initialize a TfidfRetriever
|
532 |
-
retriever = TfidfRetriever(document_store=document_store)
|
533 |
-
|
534 |
-
# Initialize a FARMReader with the selected model
|
535 |
-
reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
|
536 |
-
|
537 |
-
# Initialize the question generation pipeline
|
538 |
-
pipe = ExtractiveQAPipeline(reader, retriever)
|
539 |
-
|
540 |
-
# Initialize the QuestionGenerator
|
541 |
-
qg = QuestionGenerator()
|
542 |
-
|
543 |
-
# Generate multiple-choice questions
|
544 |
-
qa_list = qg.generate(
|
545 |
-
wiki_text,
|
546 |
-
num_questions=num_questions,
|
547 |
-
answer_style='multiple_choice'
|
548 |
-
)
|
549 |
-
|
550 |
-
# Display the generated questions and answers
|
551 |
-
st.header("Generated Questions and Answers:")
|
552 |
-
for idx, qa in enumerate(qa_list):
|
553 |
-
# Display the question
|
554 |
-
st.write(f"Question {idx + 1}: {qa['question']}")
|
555 |
-
|
556 |
-
# Display the answer options
|
557 |
-
if 'answer' in qa:
|
558 |
-
for i, option in enumerate(qa['answer']):
|
559 |
-
correct_marker = "(correct)" if option["correct"] else ""
|
560 |
-
st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")
|
561 |
-
|
562 |
-
# Add a separator after each question-answer pair
|
563 |
-
st.write("-" * 40)
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
# Run the Streamlit app
|
572 |
-
if __name__ == "__main__":
|
573 |
-
main()
|
574 |
-
|
575 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|