Spaces:
Build error
Build error
File size: 1,964 Bytes
a54266b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
title: ColPali Visual Retrieval
emoji: π
colorFrom: green
colorTo: blue
sdk: docker
sdk_version: "3.11"
app_file: app.py
pinned: false
---
# ColPali Visual Retrieval with Vespa
A powerful visual document retrieval system that combines **ColPali** (Contextual Late Interaction with Patch-level Information) with **Vespa** for scalable, intelligent document search and question-answering.
## π Features
- **Visual Document Search**: Search through PDF documents using natural language queries
- **Token-level Similarity Maps**: Visualize exactly which parts of documents match your query
- **AI-Powered Chat**: Ask questions about retrieved documents using Google Gemini
- **Multiple Ranking Methods**: Choose between ColPali, BM25, or Hybrid ranking
## π Try It Out
1. Enter a natural language query in the search box
2. Select your preferred ranking method
3. Click on token buttons to see visual attention maps
4. Ask follow-up questions in the chat interface
## π Sample Queries
- "Pie chart with model comparison"
- "Speaker diarization evaluation"
- "Results table from dense retrieval"
- "Graph showing training loss"
- "Architecture diagram with transformer"
## π οΈ Technology Stack
- **ColPali**: Visual-language model for document understanding
- **Vespa**: Distributed search engine for scalability
- **FastHTML**: Modern web framework for the UI
- **Google Gemini**: AI-powered question answering
## π About the Dataset
This demo uses ~400 pages from AI-related research papers published in 2024. The documents are processed using ColPali to create visual embeddings that enable semantic search across document images.
## π Links
- [ColPali Paper](https://arxiv.org/abs/2404.09317)
- [Vespa Documentation](https://docs.vespa.ai/)
- [Blog Post](https://blog.vespa.ai/visual-retrieval-with-colpali-and-vespa/)
- [GitHub Repository](https://github.com/vespa-engine/vespa/tree/master/examples/colpali-visual-retrieval) |