fix readme
Browse files
README.md
CHANGED
|
@@ -1,66 +1,11 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
## Getting started
|
| 15 |
-
|
| 16 |
-
Recommended environment: Python 3.11, Cuda 12, Conda. For lower verions please adjust the dependencies below.
|
| 17 |
-
|
| 18 |
-
### 1) Clone the repository
|
| 19 |
-
|
| 20 |
-
```
|
| 21 |
-
git clone https://github.com/vivjay30/cdim
|
| 22 |
-
|
| 23 |
-
cd cdim
|
| 24 |
-
```
|
| 25 |
-
|
| 26 |
-
### 2) Install dependencies
|
| 27 |
-
|
| 28 |
-
```
|
| 29 |
-
conda create -n cdim python=3.11
|
| 30 |
-
|
| 31 |
-
conda activate cdim
|
| 32 |
-
|
| 33 |
-
pip install -r requirements.txt
|
| 34 |
-
|
| 35 |
-
pip install torch==2.4.1+cu124 torchvision-0.19.1+cu124 --extra-index-url https://download.pytorch.org/whl/cu124
|
| 36 |
-
```
|
| 37 |
-
|
| 38 |
-
## Inference Examples
|
| 39 |
-
|
| 40 |
-
(The underlying diffusion models will be automatically downloaded on the first run).
|
| 41 |
-
|
| 42 |
-
#### CelebHQ Inpainting Example (T'=25 Denoising Steps)
|
| 43 |
-
|
| 44 |
-
`python inference.py sample_images/celebhq/00001.jpg 25 operator_configs/box_inpainting_config.yaml noise_configs/gaussian_noise_config.yaml google/ddpm-celebahq-256`
|
| 45 |
-
|
| 46 |
-
#### LSUN Churches Gaussian Deblur Example (T'=25 Denoising Steps)
|
| 47 |
-
`python inference.py sample_images/lsun_church.png 25 operator_configs/gaussian_blur_config.yaml noise_configs/gaussian_noise_config.yaml google/ddpm-church-256`
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
## FFHQ and Imagenet Models
|
| 51 |
-
These models are generally not as strong as the google ddpm models, but are used for comparisons with baseline methods.
|
| 52 |
-
|
| 53 |
-
From [this link](https://drive.google.com/drive/folders/1jElnRoFv7b31fG0v6pTSQkelbSX3xGZh?usp=sharing), download the checkpoints "ffhq_10m.pt" and "imagenet_256.pt" to models/
|
| 54 |
-
|
| 55 |
-
#### Imagenet Super Resolution Example
|
| 56 |
-
Here we set T'=50 to show the algorithm running slower
|
| 57 |
-
`python inference.py sample_images/imagenet_val_00002.png 50 operator_configs/super_resolution_config.yaml noise_configs/gaussian_noise_config.yaml models/imagenet_model_config.yaml`
|
| 58 |
-
|
| 59 |
-
#### FFHQ Random Inpainting (Faster)
|
| 60 |
-
Here we set T'=10 to show the algorithm running faster
|
| 61 |
-
`python inference.py sample_images/ffhq_00010.png 10 operator_configs/random_inpainting_config.yaml noise_configs/gaussian_noise_config.yaml models/ffhq_model_config.yaml`
|
| 62 |
-
|
| 63 |
-
#### A Note on Exact Recovery
|
| 64 |
-
If you set the measurement noise to 0 in gaussian_noise_config.yaml, then the recovered image should match the the observation y exactly (e.g. inpainting doesn't chance observed pixels). In practice, this doesn't happen because the diffusion schedule sets $\overline{\alpha}_0 = 0.999$ for numeric stability, meaning a tiny amount of noise is injected even at t=0.
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: CDIM
|
| 3 |
+
emoji: 😃
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.1.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
arxiv: https://arxiv.org/abs/2411.00359
|
| 11 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|