File size: 4,876 Bytes
1f460ce
2ed8848
1f460ce
 
 
 
 
 
 
 
 
 
 
 
 
 
235a140
1f460ce
 
 
3288b70
1f460ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47701d
235a140
 
b47701d
235a140
 
3288b70
 
 
 
235a140
83bba75
3288b70
235a140
 
 
 
 
 
b47701d
1f460ce
 
 
83e40e0
 
1f460ce
 
 
 
235a140
1f460ce
 
 
 
235a140
1f460ce
 
235a140
1f460ce
 
 
235a140
1f460ce
 
 
235a140
1f460ce
 
 
 
 
 
 
 
 
235a140
1f460ce
235a140
1f460ce
235a140
1f460ce
 
 
 
c5833bf
 
1f460ce
 
 
83e40e0
1f460ce
 
 
 
 
 
 
 
 
 
 
 
 
 
235a140
1f460ce
235a140
 
 
1f460ce
 
 
235a140
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import spaces
import torch
import yaml
import os
import numpy as np
from PIL import Image
from cdim.noise import get_noise
from cdim.operators import get_operator
from cdim.image_utils import save_to_image
from cdim.dps_model.dps_unet import create_model
from cdim.diffusion.scheduling_ddim import DDIMScheduler
from cdim.diffusion.diffusion_pipeline import run_diffusion
from cdim.eta_scheduler import EtaScheduler
from diffusers import DiffusionPipeline

# Global variables moved inside GPU-decorated functions
model = None
ddim_scheduler = None
model_type = None
curr_model_name = None

def load_image(image_path):
    """Process input image to tensor format."""
    image = Image.open(image_path)
    original_image = np.array(image.resize((256, 256), Image.BICUBIC))
    original_image = torch.from_numpy(original_image).unsqueeze(0).permute(0, 3, 1, 2)
    return (original_image / 127.5 - 1.0).to(torch.float)[:, :3]

def load_yaml(file_path: str) -> dict:
    with open(file_path) as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    return config

def convert_to_np(torch_image):
    return ((torch_image.detach().clamp(-1, 1).cpu().numpy().transpose(1, 2, 0) + 1) * 127.5).astype(np.uint8)

@spaces.GPU
def process_image(image_choice, noise_sigma, operator_key, T, K):
    """Combined function to handle both generation and restoration"""
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # Initialize model inside GPU-decorated function
    global model, curr_model_name, ddim_scheduler, model_type
    model_name = "google/ddpm-celebahq-256" if "Celeb" in image_choice else "google/ddpm-church-256"

    if model is None or curr_model_name != model_name:
        model_type = "diffusers"
        model = DiffusionPipeline.from_pretrained(model_name).to(device).unet
        curr_model_name = model_name
        ddim_scheduler = DDIMScheduler(
            num_train_timesteps=1000,
            beta_start=0.0001,
            beta_end=0.02,
            beta_schedule="linear"
        )

    image_paths = {
        "CelebA HQ 1": "sample_images/celebhq_29999.jpg",
        "CelebA HQ 2": "sample_images/celebhq_00001.jpg",
        "CelebA HQ 3": "sample_images/celebhq_00000.jpg",
        "LSUN Church": "sample_images/lsun_church.png"
    }

    config_paths = {
        "Box Inpainting": "operator_configs/box_inpainting_config.yaml",
        "Random Inpainting": "operator_configs/random_inpainting_config.yaml",
        "Super Resolution": "operator_configs/super_resolution_config.yaml",
        "Gaussian Deblur": "operator_configs/gaussian_blur_config.yaml"
    }

    # Generate noisy image
    image_path = image_paths[image_choice]
    original_image = load_image(image_path).to(device)
    
    noise_config = load_yaml("noise_configs/gaussian_noise_config.yaml")
    noise_config["sigma"] = noise_sigma
    noise_function = get_noise(**noise_config)
    
    operator_config = load_yaml(config_paths[operator_key])
    operator_config["device"] = device
    operator = get_operator(**operator_config)
    
    noisy_measurement = noise_function(operator(original_image))
    noisy_image = Image.fromarray(convert_to_np(noisy_measurement[0]))

    # Run restoration
    eta_scheduler = EtaScheduler("gradnorm", operator.name, T, K, 'l2', noise_function, None)
    output_image = run_diffusion(
        model, ddim_scheduler, noisy_measurement, operator, noise_function, device,
        eta_scheduler, num_inference_steps=T, K=K, model_type=model_type, loss_type='l2'
    )
    
    output_image = Image.fromarray(convert_to_np(output_image[0]))
    return noisy_image, output_image

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Noisy Image Restoration with Diffusion Models")
    
    with gr.Row():
        T = gr.Slider(10, 200, value=25, step=1, label="Number of Inference Steps (T)")
        K = gr.Slider(1, 10, value=2, step=1, label="K Value")
        noise_sigma = gr.Slider(0, 0.6, value=0.05, step=0.01, label="Noise Sigma")
    
    image_select = gr.Dropdown(
        choices=["CelebA HQ 1", "CelebA HQ 2", "CelebA HQ 3", "LSUN Church"],
        value="CelebA HQ 1",
        label="Select Input Image"
    )
    
    operator_select = gr.Dropdown(
        choices=["Box Inpainting", "Random Inpainting", "Super Resolution", "Gaussian Deblur"],
        value="Box Inpainting",
        label="Select Task"
    )
    
    run_button = gr.Button("Run Inference")
    noisy_image = gr.Image(label="Noisy Image")
    restored_image = gr.Image(label="Restored Image")

    # Single function call instead of chaining
    run_button.click(
        fn=process_image,
        inputs=[image_select, noise_sigma, operator_select, T, K],
        outputs=[noisy_image, restored_image]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)