Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,32 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import random
|
| 4 |
from PIL import Image
|
| 5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 6 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
# Stable Diffusion TurboX λ‘λ
|
| 14 |
model_repo = "tensorart/stable-diffusion-3.5-large-TurboX"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
pipe = DiffusionPipeline.from_pretrained(
|
| 16 |
model_repo,
|
| 17 |
-
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
)
|
| 19 |
-
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo, subfolder="scheduler", shift=5)
|
| 20 |
-
pipe = pipe.to(device)
|
| 21 |
|
| 22 |
MAX_SEED = 2**31 - 1
|
| 23 |
|
| 24 |
def pseudo_translate_to_korean_style(en_prompt: str) -> str:
|
| 25 |
-
|
| 26 |
-
return f"μ΄ μ₯λ©΄μ {en_prompt} μ₯λ©΄μ
λλ€. λ°κ³ κ·μ¬μ΄ μΉ΄ν° μ€νμΌλ‘ κ·Έλ €μ£ΌμΈμ. λμ§νΈ μΌλ¬μ€νΈ λλμΌλ‘ λ¬μ¬ν΄ μ£ΌμΈμ."
|
| 27 |
|
| 28 |
def generate_prompt(image):
|
| 29 |
-
"""μ΄λ―Έμ§ β μμ΄ μ€λͺ
β νκ΅μ΄ ν둬ννΈ μ€νμΌλ‘ λ³ν"""
|
| 30 |
if not isinstance(image, Image.Image):
|
| 31 |
image = Image.fromarray(image)
|
| 32 |
|
|
@@ -44,19 +136,15 @@ def generate_prompt(image):
|
|
| 44 |
image_size=(image.width, image.height)
|
| 45 |
)
|
| 46 |
prompt_en = parsed_answer["<MORE_DETAILED_CAPTION>"]
|
| 47 |
-
|
| 48 |
-
# λ²μκΈ° μμ΄ μ€νμΌ μ μ©
|
| 49 |
cartoon_prompt = pseudo_translate_to_korean_style(prompt_en)
|
| 50 |
return cartoon_prompt
|
| 51 |
|
| 52 |
def generate_image(prompt, seed=42, randomize_seed=False):
|
| 53 |
-
"""ν
μ€νΈ ν둬ννΈ β μ΄λ―Έμ§ μμ±"""
|
| 54 |
if randomize_seed:
|
| 55 |
seed = random.randint(0, MAX_SEED)
|
| 56 |
generator = torch.Generator().manual_seed(seed)
|
| 57 |
image = pipe(
|
| 58 |
prompt=prompt,
|
| 59 |
-
negative_prompt="μ곑λ μ, νλ¦Ό, μ΄μν μΌκ΅΄",
|
| 60 |
guidance_scale=1.5,
|
| 61 |
num_inference_steps=8,
|
| 62 |
width=768,
|
|
@@ -65,10 +153,9 @@ def generate_image(prompt, seed=42, randomize_seed=False):
|
|
| 65 |
).images[0]
|
| 66 |
return image, seed
|
| 67 |
|
| 68 |
-
# Gradio UI
|
| 69 |
with gr.Blocks() as demo:
|
| 70 |
gr.Markdown("# πΌ μ΄λ―Έμ§ β μ€λͺ
μμ± β μΉ΄ν° μ΄λ―Έμ§ μλ μμ±κΈ°")
|
| 71 |
-
|
| 72 |
gr.Markdown("**π μ¬μ©λ² μλ΄ (νκ΅μ΄)**\n"
|
| 73 |
"- μΌμͺ½μ μ΄λ―Έμ§λ₯Ό μ
λ‘λνμΈμ.\n"
|
| 74 |
"- AIκ° μμ΄ μ€λͺ
μ λ§λ€κ³ , λ΄λΆμμ νκ΅μ΄ μ€νμΌ ν둬ννΈλ‘ μ¬κ΅¬μ±ν©λλ€.\n"
|
|
@@ -78,7 +165,6 @@ with gr.Blocks() as demo:
|
|
| 78 |
with gr.Column():
|
| 79 |
input_img = gr.Image(label="π¨ μλ³Έ μ΄λ―Έμ§ μ
λ‘λ")
|
| 80 |
run_button = gr.Button("β¨ μμ± μμ")
|
| 81 |
-
|
| 82 |
with gr.Column():
|
| 83 |
prompt_out = gr.Textbox(label="π μ€νμΌ μ μ©λ ν둬ννΈ", lines=3, show_copy_button=True)
|
| 84 |
output_img = gr.Image(label="π μμ±λ μ΄λ―Έμ§")
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from huggingface_hub import snapshot_download
|
| 3 |
+
|
| 4 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
|
| 5 |
+
REVISION = "ceaf371f01ef66192264811b390bccad475a4f02"
|
| 6 |
+
|
| 7 |
+
LOCAL_FLORENCE = snapshot_download(
|
| 8 |
+
repo_id="microsoft/Florence-2-base",
|
| 9 |
+
revision=REVISION
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
LOCAL_TURBOX = snapshot_download(
|
| 13 |
+
repo_id="tensorart/stable-diffusion-3.5-large-TurboX"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
LOCAL_FLORENCE_DIR = snapshot_download(
|
| 17 |
+
repo_id="microsoft/Florence-2-base",
|
| 18 |
+
revision=REVISION,
|
| 19 |
+
local_files_only=False
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
import sys, types, importlib.machinery, importlib
|
| 23 |
+
|
| 24 |
+
# flash_attn 무ν¨ν μ²λ¦¬
|
| 25 |
+
spec = importlib.machinery.ModuleSpec('flash_attn', loader=None)
|
| 26 |
+
mod = types.ModuleType('flash_attn')
|
| 27 |
+
mod.__spec__ = spec
|
| 28 |
+
sys.modules['flash_attn'] = mod
|
| 29 |
+
|
| 30 |
+
import huggingface_hub as _hf_hub
|
| 31 |
+
_hf_hub.cached_download = _hf_hub.hf_hub_download
|
| 32 |
+
|
| 33 |
import gradio as gr
|
| 34 |
import torch
|
| 35 |
import random
|
| 36 |
from PIL import Image
|
| 37 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 38 |
+
from transformers import (
|
| 39 |
+
CLIPTextModel,
|
| 40 |
+
CLIPTokenizer,
|
| 41 |
+
CLIPFeatureExtractor,
|
| 42 |
+
)
|
| 43 |
+
import diffusers
|
| 44 |
+
from diffusers import StableDiffusionPipeline
|
| 45 |
+
from diffusers import DiffusionPipeline
|
| 46 |
+
from diffusers import EulerDiscreteScheduler as FlowMatchEulerDiscreteScheduler
|
| 47 |
+
from diffusers import UNet2DConditionModel
|
| 48 |
|
| 49 |
+
# flash attention κ΄λ ¨ import μ°ν
|
| 50 |
+
import transformers.utils.import_utils as _import_utils
|
| 51 |
+
from transformers.utils import is_flash_attn_2_available
|
| 52 |
+
_import_utils._is_package_available = lambda pkg: False
|
| 53 |
+
_import_utils.is_flash_attn_2_available = lambda: False
|
| 54 |
+
|
| 55 |
+
hf_utils = importlib.import_module('transformers.utils')
|
| 56 |
+
hf_utils.is_flash_attn_2_available = lambda *a, **k: False
|
| 57 |
+
hf_utils.is_flash_attn_greater_or_equal_2_10 = lambda *a, **k: False
|
| 58 |
+
|
| 59 |
+
mask_utils = importlib.import_module("transformers.modeling_attn_mask_utils")
|
| 60 |
+
for fn in ("_prepare_4d_attention_mask_for_sdpa", "_prepare_4d_causal_attention_mask_for_sdpa"):
|
| 61 |
+
if not hasattr(mask_utils, fn):
|
| 62 |
+
setattr(mask_utils, fn, lambda *a, **k: None)
|
| 63 |
+
|
| 64 |
+
cfg_mod = importlib.import_module("transformers.configuration_utils")
|
| 65 |
+
_PrC = cfg_mod.PretrainedConfig
|
| 66 |
+
_orig_getattr = _PrC.__getattribute__
|
| 67 |
+
def _getattr(self, name):
|
| 68 |
+
if name == "_attn_implementation":
|
| 69 |
+
return "sdpa"
|
| 70 |
+
return _orig_getattr(self, name)
|
| 71 |
+
_PrC.__getattribute__ = _getattr
|
| 72 |
|
|
|
|
| 73 |
model_repo = "tensorart/stable-diffusion-3.5-large-TurboX"
|
| 74 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 75 |
+
|
| 76 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
| 77 |
+
model_repo,
|
| 78 |
+
subfolder="scheduler",
|
| 79 |
+
torch_dtype=torch.float16,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 83 |
+
model_repo, subfolder="text_encoder", torch_dtype=torch.float16
|
| 84 |
+
)
|
| 85 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_repo, subfolder="tokenizer")
|
| 86 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="feature_extractor")
|
| 87 |
+
|
| 88 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 89 |
+
model_repo, subfolder="unet", torch_dtype=torch.float16
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
florence_model = AutoModelForCausalLM.from_pretrained(
|
| 93 |
+
LOCAL_FLORENCE, trust_remote_code=True, torch_dtype=torch.float16
|
| 94 |
+
)
|
| 95 |
+
florence_model.to("cpu")
|
| 96 |
+
florence_model.eval()
|
| 97 |
+
florence_processor = AutoProcessor.from_pretrained(
|
| 98 |
+
LOCAL_FLORENCE, trust_remote_code=True
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
diffusers.StableDiffusion3Pipeline = StableDiffusionPipeline
|
| 102 |
pipe = DiffusionPipeline.from_pretrained(
|
| 103 |
model_repo,
|
| 104 |
+
torch_dtype=torch.float16,
|
| 105 |
+
trust_remote_code=True,
|
| 106 |
+
safety_checker=None,
|
| 107 |
+
feature_extractor=None
|
| 108 |
+
)
|
| 109 |
+
pipe = pipe.to("cuda")
|
| 110 |
+
|
| 111 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
| 112 |
+
model_repo, subfolder="scheduler", local_files_only=True,
|
| 113 |
+
trust_remote_code=True, shift=5
|
| 114 |
)
|
|
|
|
|
|
|
| 115 |
|
| 116 |
MAX_SEED = 2**31 - 1
|
| 117 |
|
| 118 |
def pseudo_translate_to_korean_style(en_prompt: str) -> str:
|
| 119 |
+
return f"Cartoon styled {en_prompt} handsome or pretty people"
|
|
|
|
| 120 |
|
| 121 |
def generate_prompt(image):
|
|
|
|
| 122 |
if not isinstance(image, Image.Image):
|
| 123 |
image = Image.fromarray(image)
|
| 124 |
|
|
|
|
| 136 |
image_size=(image.width, image.height)
|
| 137 |
)
|
| 138 |
prompt_en = parsed_answer["<MORE_DETAILED_CAPTION>"]
|
|
|
|
|
|
|
| 139 |
cartoon_prompt = pseudo_translate_to_korean_style(prompt_en)
|
| 140 |
return cartoon_prompt
|
| 141 |
|
| 142 |
def generate_image(prompt, seed=42, randomize_seed=False):
|
|
|
|
| 143 |
if randomize_seed:
|
| 144 |
seed = random.randint(0, MAX_SEED)
|
| 145 |
generator = torch.Generator().manual_seed(seed)
|
| 146 |
image = pipe(
|
| 147 |
prompt=prompt,
|
|
|
|
| 148 |
guidance_scale=1.5,
|
| 149 |
num_inference_steps=8,
|
| 150 |
width=768,
|
|
|
|
| 153 |
).images[0]
|
| 154 |
return image, seed
|
| 155 |
|
| 156 |
+
# Gradio UI
|
| 157 |
with gr.Blocks() as demo:
|
| 158 |
gr.Markdown("# πΌ μ΄λ―Έμ§ β μ€λͺ
μμ± β μΉ΄ν° μ΄λ―Έμ§ μλ μμ±κΈ°")
|
|
|
|
| 159 |
gr.Markdown("**π μ¬μ©λ² μλ΄ (νκ΅μ΄)**\n"
|
| 160 |
"- μΌμͺ½μ μ΄λ―Έμ§λ₯Ό μ
λ‘λνμΈμ.\n"
|
| 161 |
"- AIκ° μμ΄ μ€λͺ
μ λ§λ€κ³ , λ΄λΆμμ νκ΅μ΄ μ€νμΌ ν둬ννΈλ‘ μ¬κ΅¬μ±ν©λλ€.\n"
|
|
|
|
| 165 |
with gr.Column():
|
| 166 |
input_img = gr.Image(label="π¨ μλ³Έ μ΄λ―Έμ§ μ
λ‘λ")
|
| 167 |
run_button = gr.Button("β¨ μμ± μμ")
|
|
|
|
| 168 |
with gr.Column():
|
| 169 |
prompt_out = gr.Textbox(label="π μ€νμΌ μ μ©λ ν둬ννΈ", lines=3, show_copy_button=True)
|
| 170 |
output_img = gr.Image(label="π μμ±λ μ΄λ―Έμ§")
|